Scalable Score Computation for Learning Multinomial Bayesian Networks over
Distributed Data*

Praveen Rao’, Anas Katib’, Kobus Barnard*, Charles Kamhoua*, Kevin Kwiat!, Laurent Njilla*
t Department of Computer Science & Electrical Engineering, University of Missouri-Kansas City
* Department of Computer Science, University of Arizona
¥ Air Force Research Lab, Cyber Assurance Branch
raopr@umkec.edu, anaskatib@mail.umkc.edu, kobus @cs.arizona.edu, {charles.kamhoua.1,kevin.kwiat,laurent.njilla} @us.af.mil

Abstract

In this paper, we focus on the problem of learning a Bayesian
network over distributed data stored in a commodity cluster.
Specifically, we address the challenge of computing the scor-
ing function over distributed data in a scalable manner, which
is a fundamental task during learning. We propose a novel
approach designed to achieve: (a) scalable score computation
using the principle of gossiping; (b) lower resource consump-
tion via a probabilistic approach for maintaining scores using
the properties of a Markov chain; and (c) effective distribu-
tion of tasks during score computation (on large datasets) by
synergistically combining well-known hashing techniques.
Through theoretical analysis, we show that our approach is
superior to a MapReduce-style computation in terms of com-
munication bandwidth. Further, it is superior to the batch-
style processing of MapReduce for recomputing scores when
new data are available.

1 Introduction

Today, there is tremendous interest in designing new
methodologies for gaining insights over big data to enable
timely and effective decision making. It is reported that big
data analytics can strengthen national security and provide
resilience to cyber attacks.! While statistical models pro-
vide an elegant framework to gain knowledge from data,
the volume and variety of big data demands a paradigm
shift—datasets are heterogeneous, massive, and distributed
in nature. Massive datasets are being stored and processed
in large-scale commodity clusters, and several new frame-
works have emerged for scalable machine learning (Low et
al. 2012; Li et al. 2014; MLIib 2015).

Among the different statistical models, Bayesian net-
works (BNs) provide a natural way for knowledge repre-
sentation and reasoning over heterogeneous data under un-
certainty (Pearl 2000). BNs have been successfully used

*Approved for Public Release; Distribution Unlimited:
88ABW-2016-5881, dated 18 Nov 2016. The first author would
like to acknowledge the support of the U.S. Air Force Summer
Faculty Fellowship Program, National Research Council Research
Associateship Program, and University of Missouri Research
Board.
Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

www.whitehouse.gov/sites/default/files/docs/big_data_privacy
_report_5.1.14 _final _print.pdf

in many areas including medical/fault diagnosis, bioinfor-
matics and computational biology, and others. They play a
key role in automated reasoning systems and in data clus-
tering (Grossman and Domingos 2004; Heller and Ghahra-
mani 2005). To learn a BN from the data, we need to learn
its structure and the parameters of the conditional proba-
bility distributions that best fit the observed data. As ex-
act structure learning of BNs is NP-complete (Chickering
1996), approximate structure learning techniques have been
developed over the years. We are particularly interested in
score-based learning algorithms, which use heuristic search
for approximate structure learning, wherein a search space
of possible structures is searched by applying a scoring func-
tion. However, for efficient structure learning on large-scale
distributed data, it is essential to first compute the scoring
function on the data in a scalable manner, which is the fo-
cus of this work.

We propose a novel approach called DiSC (Distributed
Score Computation) designed to achieve: (a) scalable score
computation using the principle of gossiping; (b) lower re-
source consumption via a probabilistic approach for main-
taining scores using the properties of a Markov chain; and
(c) effective distribution of tasks during score computa-
tion (on large datasets) by synergistically combining consis-
tent hashing and locality sensitive hashing (LSH). Through
theoretical analysis, we show that DiSC is superior to
MapReduce-style score computation in terms of communi-
cation bandwidth. We also show that DiSC is superior to
the batch-style processing of MapReduce for recomputing
scores when new data are available.

2 Background & Motivation
2.1 Score-Based Learning of BNs

A lot of advances have been made over the last few decades
in score-based learning algorithms (Koller and Friedman
2009). At each step in the search, the algorithm attempts
to improve the overall score of the BN by modifying the
DAG structure via local steps such as edge deletion, addi-
tion, reversal, etc., and computing a score difference of the
affected variables. Different search strategies (e.g., greedy
hill-climbing, simulated annealing) can be used, and when
the network score does not improve further, the algorithm
terminates. If the structure is known, parameter estimation

In the AAAI 2017 Workshop on Distributed Machine Learning (DML 2017), San Francisco, CA, 2017

In the AAAI 2017 Workshop on Distributed Machine Learning (DML 2017), San Francisco, CA, 2017

is done by computing sufficient statistics over the data in
one pass (e.g., parameters of a Dirichlet distribution for a
multinomial random variable).

Computing the scoring function is a fundamental task dur-
ing approximate structure learning. Let d denote the data
instances/records. Suppose X; denotes a multinomial ran-
dom variable and Val(X;) denotes the set of possible val-
ues of X;. Let 2/ € Val(X;) denote a possible value of
X;. Let Pa$, denote the parents of X; in a DAG G. Note
that Xi|Pa§(i is also called a family. Suppose Val (Pa%)
denotes all possible configurations of Pag;(i (i.e., assign-
ment of values to the parents). Let u; € Val(Pa§,) de-
note a particular configuration of X;’s parents. For each
configuration, let M[u;] = S Mla?,uy], and let

dleVal(X;)
Xy, = > il denote the prior parameters of
zleVal(X;)

the Dirichlet distribution. The tuple containing all M [, u;]
is referred to as the sufficient statistics (i.e., the number of

data instances where X; =] with parent configuration w;).
Assuming the Bayesian Dirichlet equivalence (BDe) scoring
function (Koller and Friedman 2009),

score(X;|Pax,,d) =

F(axi|“i)
H F(O‘XHW +M[ui])x

u; GVal(Pagi)

T(o,, + Mzl i)
()

. ey,)
a:ZEVal(Xi) il

The total score of a DAG G for Xy,...,X, on d
is the product of the family scores, i.e., score(G,d) =
[T, score(X;|Pax,,d). (We can compute the logarithm
of the total score to replace products by sums.) During learn-
ing, we only need to compute the change in the score due to
the DAG operations. When data instances are distributed,
it is a serious challenge to compute the required sufficient
statistics for the family scores—the focus of our work.

2.2 Learning a BN in a Commodity Cluster

Recently, parallel methods for scalable BN learning and
reasoning using MapReduce were proposed for a shared-
nothing cluster (Basak et al. 2012; Chen et al. 2013; Fang
et al. 2013; Zhao, Xu, and Gao 2013; SMILE-WIDE 2014).
One may wonder if we can simply develop a parallel algo-
rithm to compute the family scores using the map and re-
duce operations in Apache Spark (Zaharia et al. 2010). This
can be done by identifying all possible families that may be
needed during structure learning and partial counts on in-
dividual data blocks (in the map phase) and computing the
required sufficient statistics for each family (in the reduce
phase). However, as shown later in Section 3.4, the com-
munication cost of this algorithm grows linearly with the
number of cluster nodes. Furthermore, the batch-oriented
nature of MapReduce requires complete re-execution when
new data instances are added.

2.3 Gossip Algorithms

Gossip algorithms were used by companies like Ama-
zon and Facebook to build global-scale computing plat-
forms (DeCandia et al. 2007; Lakshman and Malik 2009).
They are attractive in large-scale distributed systems due to
their simplicity, decentralized nature, high scalability, ability
to tolerate failures, and ability to provide probabilistic guar-
antees. The essence of these algorithms lies in the exchange
of information or aggregates between a pair of nodes, using
a probability transition matrix for the given network topol-
ogy. It has been shown that after a provably finite number of
rounds/time intervals and a provably finite number of mes-
sage exchanges, the information has reached all the nodes
or the aggregates have converged to the true value (Kempe,
Dobra, and Gehrke 2003; Boyd et al. 2005).

In this work, we draw inspiration from a state-of-the-art
gossip algorithm proposed by Mosk-Aoyama et al. (Mosk-
Aoyama and Shah 2008) to compute the sum of values
stored on n nodes. We call this algorithm SUM. Let P =
[P;;] denote a (doubly stochastic) probability transition ma-
trix, where P;; is the probability that node 4 contacts node
j during gossip. Each node has a local clock that ticks at
the times of rate 1 Poisson process. Let z; denote the value
at node ¢. Each node 7 maintains independent exponen-
tial random variables with rate x;, say Ej; where [= 1
to r. A node becomes active when its local clock ticks,
selects a neighbor with probability F;;, and then they ex-
change their current state. It computes for [= 1 to r,
m; = min}_; Ej;. Finally, it uses ﬁ as the estimate

of >>"" | ;. Suppose Tsy (€, 8, P) is the smallest time at
which each node has computed the sum such that it is within
¢ of the true average with probability at least 1 — €. (This
is called the convergence speed.) Then Tsyas(e, 0, P) =

—1 —1
O(log n l%%;(P)+ log &), where ®(P) denotes the con-

ductance of the communication topology.

2.4 Challenges and Motivation

There are several technical challenges that must be ad-
dressed to develop a scalable score computation approach
over large-scale distributed data. First, data blocks are dis-
tributed across nodes in a cluster. Therefore, it is pragmatic
to move computations to data (Dean and Ghemawat 2004).
Second, the score computation should be efficient, scalable,
tolerate failures and changes to the cluster topology, and
provide provable guarantees on the quality of the estimated
scores. This requires fast aggregate computation (e.g., sum)
over distributed data, effective load balancing of tasks, and
redundancy to cope with failures. While a straightforward
application of SUM sounds promising, unfortunately, it does
not yield a scalable solution for score computation of fam-
ilies. (We provide more details in Section 3.2.) Therefore,
we must design a new algorithm by adapting SUM. Third,
when new data are produced, efficient recomputation of fam-
ily scores over a large dataset is necessary for faster relearn-
ing than a batch-style approach.

3 Our Approach

In this section, we present DiSC and explain the key ideas
that underpin its design. We also present the theoretical anal-
ysis of DiSC w.r.t. its performance and scalability. DiSC
addresses two key issues during score computation: (a) dis-
tribution of families across cluster nodes for load balancing,
and (b) scalable score computation of families in a fault-
tolerant manner. DiSC can be viewed as a black box (by
different score-based BN learning algorithms) to provide an
estimate of a family score over large-scale distributed data.
DiSC can also be used to learn the parameters of a BN when
the structure is already known. (See Table 1 for frequently
used notations in the remainder of the paper.)

| Notation | Description]

f = | A family f where X is a random variable

X|Pax and Pax is the set of parents

N; A node in the cluster

[sn,,en,;] | The interval assigned to N; in consistent
hashing address space

Fn, The family list of the cluster node NN;

L The hash function that combines LSH and
consistent hashing

k Number of hash values output by L

hy The j** hash value output by L

P Conductance of a network of cluster nodes

0, P/, Qf Doubly stochastic transition matrices

L = | A row matrix denoting the stationary dis-

[w} .. w;}] tribution of a Markov chain with n states
for family f

D Number of distinct families in the network

SSAy Sufficient statistics array of the family f

1—c¢ Desired confidence of an estimate via gos-
sip

1-9 Desired accuracy of an estimate via gossip

Tsum Convergence speed of SUM

Tpisc Convergence speed of DiSC

Table 1: Table of notations

3.1 Distribution of Families

Given a cluster with n nodes, we assume they are connected
by an overlay network, where any two nodes can commu-
nicate with each other in a finite number of hops (e.g., us-
ing a Distributed Hash Table (DHT) (Stoica et al. 2001)).
The decomposability property of the Bayesian scoring func-
tion (e.g., Equation 1) enables us to achieve distributed score
computation. There are two issues that arise. First, we must
distribute the task of computing the scores of families across
the cluster nodes in a scalable, load-balanced, and fault-
tolerant manner. This implies that when the learning algo-
rithm is running on a cluster node, the score of a family may
not be available locally and requires communication with
another cluster node. Thus, the second issue is to allow a
cluster node to manage similar families so that we can min-
imize the number of network lookups during BN learning.

XqlPay,
X1 Pay, X,|Pay,

Array of counters
(sufficient statistics)

X;3lPay; 4’ ¢; columns
]
.]
[XlPa fr———*
L] l

Family list

r, rows

Xs|Pays

— 1 ¢; = |Val(Pa,
X, IPay, X.|Pax, ' IVal(Pay)|
X4lPay, ri = [Val(x)

(a) Initial assignment (b) Family list

Figure 1: Assignment of families to cluster nodes

We address the above issues by synergistically combining
consistent hashing (Stoica et al. 2001) and LSH (Indyk and
Motwani 1998). In consistent hashing, only a finite fraction
of the keys need to be redistributed when there is a change
in the size of the hash table (or cluster) allowing DHTs to
scale. Using LSH, data items that are more similar are more
likely to produce collisions. We can design LSH for sets us-
ing k£ x [random linear hash functions as follows (Haveli-
wala et al. 2002): For each linear hash function, apply it on
each item in a set and compute the minimum of the hash
values. Create k groups each with [minimum hash values;
concatenate [minimum values in each group and apply an-
other hash function (e.g., SHA-1) to produces a value in the
integer range [0, m]. Finally, produce a total of k values for a
set. Let {hg ,...,h% } and {hy,,..., k% } denote the out-
puts of LSH on sets S and Sy, respectively. It is known that
if the similarity (i.e., Jaccard index) between S; and S5 is p,
the probability that there exists at least one pair of identical
hash values is 1 — (1 — p')¥, iie., hly =hi (1 <i<k).

Like in a DHT, let Ng,..., N,,_1 denote the n cluster
nodes mapped to a 160-bit hash address space. We parti-
tion the address space [0, 2169 — 1] equally among the clus-
ter nodes. Let [sy,, en,] denote the interval assigned to N;.
(A similar way of assigning ranges is employed by Cassan-
dra (Lakshman and Malik 2009) and Dynamo (DeCandia
et al. 2007).) Let I denote LSH on a set that produces k
hash values in the range [0,2'%° — 1] using SHA-1. Given
a family f = X|Pax, we first represent it as a set of ran-
dom variables { X} U Pax. Let {h}, e h’}} denote the &k
hash values output by L({ X } U Pax). We assign f to every
cluster node whose assigned interval contains any h}, where
1 < j < k. Essentially, through consistent hashing, we dis-
tribute the families almost evenly across nodes in a cluster.
Through LSH, we can ensure that two similar sets/families
are assigned to the same node with high probability. This
will be useful to a score-based learning algorithm when re-
trieving the scores of similar families. Due to k values output
by LSH, multiple cluster nodes will be assigned a family and
are responsible for computing the score of that family. Thus,
DiSC can cope with node failures for high availability.

Example 1 An example of assignment of families is shown
in Figure I(a). Cluster nodes Ny, ..., N7 are assigned in-
tervals in the hash address space. Suppose there are four
families f1 = X1|Pax,, fa = X2|Pax,, f3 = X3|Pax,,

and fy = X4|Pax,. Let L produce k = 2 hash values.
Therefore, each family is assigned to two nodes in the clus-
ter. Suppose the set representations of {X1} U Pax, and
{X4} U Pax, have high similarity. As shown in the figure,
Ny is assigned both f, and f4 due to the property of LSH.

Each node N; stores the families assigned to it in its fam-
ily list Fy,. For each family f, an array of r x ¢ counters
is maintained, where r = |Val(X)| and ¢ = |Val(Pax)]|.
We call this the sufficient statistics array (SSA) of f denoted
by SSAy. Algorithm 1 shows the overall steps. Figure 1(b)
shows an example of a family list.

Algorithm 1 AssignFamily(f)
1: Let f = XLPaX
c{hy, B < L({X} U Pay)
: for j=1to k do ‘
Route f to a cluster node N; such that 7} € [sn,, en,]

Add f to the family list F, of IV; and initialize the
counters in SSAy to 0

3.2 Gossip-based Score Computation

The next challenge is to compute the scores of families in a
scalable manner on large distributed data. We need to com-
pute the sufficient statistics of each family. By straightfor-
ward application of SUM (Section 2.3), the counters can be
updated to obtain the desired sufficient statistics. Unfortu-
nately, a major drawback of this approach is that each node
will learn about more families each time it gossips and even-
tually track the sufficient statistics of all the families known
to the cluster nodes. This will defeat the purpose of gossip-
ing because of potentially very large number of unique fam-
ilies (e.g., when a dataset has large number of variables) to
consider during learning. As a result, each node may run
out of main memory due to a very large family list and
consume high network bandwidth during each message ex-
change. (Similar rationale was used in XGossip? albeit for a
different problem and gossip algorithm.)

p,f, =f\\\,N(hl/ L({Z).\ B

X, |Pay, X3|Pay;
XolPay, — XlPay,
(o N
XolPays X;lPaxs SNj

XelPay, /N N2\ Xy1Pay,
/ "2\

I
{_{ Hash address space }_ hlf

[0,21-1]]
N / [Hash address space
/ 160
XylPax; \° X,[Pas \ [0, 21¢0-1] ey
XslPas XqlPays
N,:‘"I"/

XilPay XalPax
XlPaxe XilPaxs

(a) A good assignment (b) The function PZ.’;.

Figure 2: DiSC

To overcome the above limitations, we develop a gossip
algorithm (inspired by SUM) to scalably compute the suffi-

*https://github.com/UMKC-BigDataLab/XGossip

cient statistics of families. Our algorithm employs a proba-
bilistic approach for guaranteeing a bound on the number of
families managed by each node. As shown in Figure 2(a),
we would like each node to manage only a finite fraction of
the families. This is achieved using a Markov chain and its
attractive properties. A Markov chain is modeled by ¢ states,
S1, ..., 5S¢, where the probability of transitioning from one
state to another is given by a transition matrix T. The sta-
tionary distribution of the Markov chain is denoted by a row
matrix 7 = [r!...7] s.t. # = w'T. Over a long run, the
probability of being at a particular state s; converges to the
stationary distribution 7; independent of the starting state.

We model the n cluster nodes by a Markov chain with n
states. We define a few transition matrices. We define a dou-
bly stochastic transition matrix O where O;; = % For each
family f, we define another doubly stochastic transition ma-

tix P s.t. P, = [“ N(h},0?) fori # j. That s, for f,

SN

we define a normal distribution with mean h} and standard

deviation o. An illustration of Pij; is shown in Figure 2(b).

Finally, we define a doubly stochastic transition matrix Q7
s.t. Q{j =0y x Pij; fori # j.

The steps involved during gossiping are listed in Algo-
rithms 2 and 3. Algorithm 2 shows the actions performed by
every cluster node. Consider node /N;. When its local clock
ticks, it becomes active during gossiping and does the fol-
lowing for each family f € Fy,: Pick a neighbor IV; with
probability O;;. Exchange the state with N; for updating

sufficient statistics of f. Compute PZ-J; using h} as the mean

and a preselected o. With probability PZJ; do the following:
Inform N to add f to its family list, and if V; is not respon-
sible for f, remove f from Fy,. This key idea of probabilis-
tically removing a family from the family list of a cluster
node, prevents the list from growing very large. (See Sec-

tion 3.4 for a bound on the size of the family list.)

Algorithm 3 lists the steps performed by every cluster
node when it is receives messages from other nodes dur-
ing gossiping. If the family under consideration is not in the
family list of the receiving node, then it initializes the SSA of
the family (using any local data blocks). The node uses the
sender’s state and updates the counters with new estimates.
It adds the family to its family list if instructed.

3.3 Retrieving Scores During Learning

DiSC can be viewed as a black box by (a serial or paral-
lel version of) a score-based learning algorithm, wherein it
has precomputed the sufficient statistics of families required
during learning. When the learning algorithm executes on a
cluster node and needs the sufficient statistics of a family, the
node’s family list is checked. If the family is present, then its
SSA is fetched without any network communication. Other-
wise, a cluster node storing the family should be contacted
(by applying L on the family) to fetch the SSA. Because of
LSH, it is more likely for the learning algorithm to retrieve
the SSAs of similar families from the same node, thereby
reducing the network latency during learning.

Algorithm 2 DiSC-Gossip()

1: Let N; denote the cluster node executing this procedure
2: Let O denote the doubly stochastic transition matrix of
a Markov chain representing the n cluster nodes, s.t.
Oij =1

n

3: Initialize rate 1 Poisson process at node [V, for gossiping
4: for each local clock tick do
5: Pick a neighbor N; with probability O;;
6: for each family f € Fy, do
7: Send state to /V; and receive state from V; to up-
date the sufficient statistics {We compute the min-
imum of exponential random variables like SUM}
8: Let P/ denote a doubly stochastic transition matrix
for f, where P}; = fse;vvj N(h},0?) fori # j
9: Compute P;; given h}c and o
10 if35,1<j<kst hjc € [sn,,en,] then
11: With prob. Pf; send message to IV; to store f
12: else
13: With prob. Pi’;-, remove f from Fy, and send

message to IV; to store f

Algorithm 3 DiSC-Recv()

1: Let N; denote the cluster node executing this procedure

2: while new message is received do

3: if the message contains state of family f then

4: if f ¢ Fy, then

5 Initialize the sufficient statistics of f using the

local data blocks if any

6: Update the sufficient statistics for f using the
sender’s state {We compute the minimum of ex-
ponential random variables like SUM}

7: Send local state of f to the sender

8: else if the message indicates adding f to Fy; and f ¢
Fy, then

9: Add f and its sufficient statistics to [Fy;

3.4 Theoretical Analysis of DiSC

We present the theoretical analysis of DiSC by considering
the following metrics: (a) accuracy and confidence of the
estimated sufficient statistics of a family, (b) convergence
speed of the gossip algorithm, and (c) memory and network
bandwidth requirement during gossip. We state a theorem
on the convergence speed of DiSC to estimate the sufficient
statistics of a family.

Theorem 1 Suppose node N; is responsible for comput-
ing the score of a family f. Let Tp;sc(f,€,0) denote the
smallest time at which N; can estimate the sufficient statis-
tics for [within a relative error of € with a probability of
at least 1 — 4. Then Tsyn(€,0,0) < Tpisc(f,€0) <
Tsu (e, 6,Q7).

Proof. The dissemination speed of a gossip algorithm to

compute SSA¢ will depend on how fast the state of the
nodes are exchanged through the network. Suppose we use

SUM with the probability transition matrix O to estimate
SSAy. Then the convergence speed is Tgym(€,d, O). In
DiSC, we exchange the node states with probability O;;
(Line 7 in Algorithm 2). But we exchange a family only
with probability Q{J = Oy X Pg; (Line 10 in Algorithm 2).
(Note that Qlfj < O;j for i # j.) Therefore, the dissemina-
tion speed of DiSC cannot be faster than SUM with transi-
tion matrix O. Therefore, Tsyas (€, 0, O) < Tpisc(f,¢€,0).
However, DiSC is at least as fast as SUM with transition

matrix Qf, because the node states are exchanged each
time a node 4 contacts j with probability O;;. Therefore,

Tpisc(f,€,0) < Tsum(e, 5,QF). O

The next theorem states the expected value of the number
of families tracked by each node. This key property enables
DiSC to scale with increasing number of families to con-
sider when learning a BN.

Theorem 2 For a family f, let wy = [} ... m}] denote the

stationary distribution of the Markov chain with the transi-
tion matrix Q7 containing n states. Let D denote the number
of distinct families and k denote the number of hash values
output by L. Then E(|[Fn,|) = Y 7% + D,
fep
Proof. Let us define a binary random variable Y} to indicate
the presence or absence of f in [Fx,. Suppose Yy = 1 when
f € Fn, and Y; = 0 otherwise. Let U denote a random
variable that denotes the number of families /V; is respon-
sible for via L. We define a random variable Z =) Y}
feD

+ U, an unbiased estimator of |Fy;,|. Consistent hashing in
L ensures that the families are distributed evenly across the
nodes with high probability. Furthermore, L produces k hash
values per family. Thus, over a long run (i.e., clock ticks),

E(Z)= Y E(Y;)+EU) =Y «} + £ O
FebD febD

The intuition for the above theorem is that the probability
of a family being stored in the family list of a node will con-
verge to the stationary distribution of the underlying Markov
chain. In addition, a node is also responsible for storing a
fraction of all the distinct families due to L.

Next, we discuss the memory and network bandwidth re-
quirement. The SSA of each family X;|Pax, contains r; x
¢; counters, where r; = |Val(X;)| and ¢; = |Val(Pax,)|.
Over a long run, the expected number of families stored by
anode is given by Theorem 2. According to Theorem 1, the
number of clock ticks required by DiSC for convergence of
the sufficient statistics of a family is given by Tp;sc ([, €, 9).
Suppose each node maintains r exponential random vari-
ables per counter in a family’s S'S A. During each clock tick,
for a family X;|Pay,, two nodes exchange r x r; X ¢; ex-
ponential random variables to compute their minimum.

3.5 DiSC vs MapReduce

Suppose we develop a MapReduce program for computing
the scores of D distinct families. In the map phase, the par-
tial counts for each family f € ID on each block of data are
computed. During the reduce phase, the sufficient statistics

across all the data blocks for each family is obtained. On a
cluster of n nodes, the map phase will produce intermedi-
ate key-value data of size proportional to n X »_ (ry X cy)
feD
words, assuming maximum parallelism. During the reduce
phase, the intermediate key-value data must be moved to
the reducers through the network. Hence, the communica-
tion cost is O(nDS), where S is the size of the largest SSA
in D. In DiSC, the number of time steps (involving commu-
nication) for estimating the sufficient statistics of a family
is O(log(n)), given a user-specified accuracy, LSH param-
eters, communication topology, and other user-defined pa-
rameters. For DD families, the total communication cost is
O(log(n)DS). Hence, DiSC is superior to MapReduce in
terms of communication bandwidth.

3.6 Computing Family Scores on New Data

Because gossiping can be done continuously in the back-
ground, DiSC can efficiently compute the family scores as
new data are produced. As each node computes the mini-
mum of the exponential random variables (like in SUM), we
make the following observations: At time ¢, let X ZQ denote
the exponential random variable with rate 0 maintained by
a node for a family. At time ¢, let the sufficient statistics of
the family increase to ! due to new data instances. Let X}
denote the new exponential random variable with rate x;.

It is known that Pr(X? < X}!) = o]

PRI
z;+x;

Therefore, with

probability the other cluster nodes learn about =} by

=)
w?«kx} ’
updating their minimum as they continue to gossip. As such,
only the nodes receiving new data instances must reinitialize
the exponential random variables for the affected sufficient
statistics. On the other hand, the batch-style processing of
MapReduce must process the entire dataset (with new data)
to obtain the new scores of families. As a result, DiSC is
superior to MapReduce for fast score recomputation.

4 Conclusions

In this paper, we presented DiSC, a novel approach for scal-
able score computation during learning of a multinomial BN
over big data stored in a cluster. DiSC is based on the prin-
ciple of gossipping, properties of Markov chains, and lever-
ages well-known hashing techniques. Through theoretical
analysis, we showed that DiSC is superior to a MapReduce-
style computation in terms of communication bandwidth. In
addition, DiSC is superior to batch-oriented MapReduce for
recomputation of scores when new data are available.

References
Basak, A.; Brinster, I.; Ma, X.; and Mengshoel, O. 2012. Accel-
erating Bayesian Network Parameter Learning using Hadoop and
MapReduce. In Proc. of 2012 BigMine Workshop, 1-8.
Boyd, S. P.; Ghosh, A.; Prabhakar, B.; and Shah, D. 2005. Gossip
Algorithms: Design, Analysis and Applications. In Proc. of INFO-
COM 2005, 1653-1664.
Chen, W.; Wang, T.; Yang, D.; Lei, K.; and Liu, Y. 2013. Massively
Parallel Learning of Bayesian Networks with MapReduce for Fac-
tor Relationship Analysis. In Proc. of Intl. Joint Conf. on Neural
Networks, 1-5.

Chickering, D. 1996. Learning from Data: Artificial Intelligence
and Statistics V. chapter Learning Bayesian Networks is NP-
Complete, 121-130.

Dean, J., and Ghemawat, S. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. of the 6th OSDI Conference,
137-150.

DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Laksh-
man, A.; Pilchin, A.; Sivasubramanian, S.; Vosshall, P.; and Vogels,
W. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proc. of 21st Symp. on Operating Systems Principles, 205-220.
Fang, Q.; Yue, K.; Fu, X.; Wu, H.; and Liu, W. 2013. A
MapReduce-based Method for Learning Bayesian Network from
Massive Data. In Proc. of 2013 APWeb Conference, 697-708.

Grossman, D., and Domingos, P. 2004. Learning Bayesian Net-
work Classifiers by Maximizing Conditional Likelihood. In Proc.
of the 21st International Conference on Machine Learning, 46-54.

Haveliwala, T. H.; Gionis, A.; Klein, D.; and Indyk, P. 2002. Eval-
uating Strategies for Similarity Search on the Web. In Proc. of the
11th WWW Conference, 432-442.

Heller, K. A., and Ghahramani, Z. 2005. Bayesian Hierarchical
Clustering. In Proc. of the 22nd International Conference on Ma-
chine Learning, 297-304.

Indyk, P., and Motwani, R. 1998. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. In Proceedings
of the 13th ACM Symposium on Theory of Computing, 604-613.

Kempe, D.; Dobra, A.; and Gehrke, J. 2003. Gossip-Based Com-
putation of Aggregate Information. In Proc. of the 44th IEEE Sym-
posium on Foundations of Computer Science, 482-491.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical Mod-
els: Principles and Techniques. The MIT Press.

Lakshman, A., and Malik, P. 2009. Cassandra: A Structured Stor-
age System on a P2P network. In Proc. of the 21st Symposium on
Parallelism in Algorithms and Architectures, 47.

Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed, A.;
Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In Proc.
of the 11th OSDI Conference, 583-598.

Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin, C.; and
Hellerstein, J. M. 2012. Distributed GraphLab: A framework for
machine learning in the cloud. In Proc. of PVLDB Conference,
716-7217.

MLIib. 2015. http://spark.apache.org/mllib.

Mosk-Aoyama, D., and Shah, D. 2008. Fast Distributed Algo-
rithms for Computing Separable Functions. [EEE Transactions on
Information Theory 54(7):2997-3007.

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press.

SMILE-WIDE. 2014. http://smilewide.github.io/main.

Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M. F.; and Balakrish-
nan, H. 2001. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Proc. of the 2001 ACM-SIGCOMM
Conference, 149-160.

Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.; and Sto-
ica, I. 2010. Spark: Cluster Computing with Working Sets. In Proc.
of the 2nd USENIX Conference on Hot Topics in Cloud Computing,
10-10.

Zhao, Y.; Xu, J.; and Gao, Y. 2013. A Parallel Algorithm for
Bayesian Network Parameter Learning Based on Factor Graph. In
Proc. of IEEE Intl. Conf. on Tools with Artificial Intelligence, 506—
511.

