
X

Fast Approximate Score Computation on Large-Scale
Distributed Data for Learning Multinomial Bayesian
Networks

ANAS KATIB, University of Missouri-Kansas City, USA
PRAVEEN RAO, University of Missouri-Kansas City, USA
KOBUS BARNARD, University of Arizona, USA
CHARLES KAMHOUA, Army Research Lab, USA

In this paper, we focus on the problem of learning a Bayesian network over distributed data stored in a
commodity cluster. Speci�cally, we address the challenge of computing the scoring function over distributed
data in an e�cient and scalable manner, which is a fundamental task during learning. While exact score
computation can be done using the MapReduce-style computation, our goal is to compute approximate scores
much faster with probabilistic error bounds and in a scalable manner. We propose a novel approach which is
designed to achieve: (a) decentralized score computation using the principle of gossiping; (b) lower resource
consumption via a probabilistic approach for maintaining scores using the properties of a Markov chain; and
(c) e�ective distribution of tasks during score computation (on large datasets) by synergistically combining
well-known hashing techniques. We conduct theoretical analysis of our approach in terms of convergence
speed of the statistics required for score computation, and memory and network bandwidth consumption. We
also discuss how our approach is capable of e�ciently recomputing scores when new data are available. We
conducted a comprehensive evaluation of our approach and compared with the MapReduce-style computation
using datasets of di�erent characteristics on a 16-node cluster. When the MapReduce-style computation
provided exact statistics for score computation, it was nearly 10 times slower than our approach. Although it
ran faster on randomly sampled datasets than on the entire datasets, it performed worse than our approach in
terms of accuracy. Our approach achieved high accuracy (below 6% average relative error) in estimating the
statistics for approximate score computation on all the tested datasets. In conclusion, it provides a feasible
tradeo� between computation time and accuracy for fast approximate score computation on large-scale
distributed data.

ACM Reference Format:
Anas Katib, Praveen Rao, Kobus Barnard, and Charles Kamhoua. 2018. Fast Approximate Score Computation
on Large-Scale Distributed Data for Learning Multinomial Bayesian Networks. ACM Trans. Knowl. Discov.
Data. X, X, Article X (December 2018), 41 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Today, there is tremendous interest in designing new methodologies for gaining insights over big
data to enable timely and e�ective decision making. Big data technologies will be transformative in
many domains and will enable scienti�c and technological advances in national security, healthcare

Authors’ addresses: Anas Katib, University of Missouri-Kansas City, Kansas City, MO, 64110, USA, anaskatib@mail.umkc.
edu; Praveen Rao, University of Missouri-Kansas City, Kansas City, MO, 64110, USA, raopr@umkc.edu; Kobus Barnard,
University of Arizona, Tucson, AZ, 85719, USA, kobus@cs.arizona.edu; Charles Kamhoua, Army Research Lab, Adelphi,
MD, 20783, USA, charles.a.kamhoua.civ@mail.mil.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1556-4681/2018/12-ARTX $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 1 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

(Accepted for publication Nov. 9, 2018)

X:2 A. Katib et al.

delivery, science and engineering, retail, education, and others [51]. While statistical models
provide an elegant framework to gain knowledge from data [18], the volume and variety of big data
demands a paradigm shift–datasets are heterogeneous, massive, and distributed in nature. Massive
datasets are being stored and processed in large-scale commodity clusters using frameworks like
Apache Hadoop [62] and Apache Spark [64]. Several new frameworks have emerged for scalable
machine learning problems (e.g., GraphLab [42, 43], MLlib [46], Parameter Server [40], Petuum [63],
SystemML [12, 25]).
Among the di�erent statistical models, Bayesian networks (BNs) provide a natural way for

knowledge representation and reasoning over heterogeneous data under uncertainty [50]. BNs
have been successfully used in many areas including medical/fault diagnosis, bioinformatics and
computational biology, and others. They play a key role in automated reasoning systems and in data
clustering [26, 28]. More recently, researchers are employing BNs for causal discovery of biomedical
knowledge from big data [17]. A BN can model causal relationships among features/attributes of
the data. It provides a way to assert the conditional independencies between di�erent features of
the data, modeled as random variables. It compactly encodes the joint probability distribution of
the random variables by a set of conditional probabilities of these variables given their parents in a
directed acyclic graph (DAG).

To learn a BN from the data, we need to learn its structure and the parameters of the conditional
probability distributions that best �t the observed data. Because exact structure learning of BNs
is NP-complete [16], approximate structure learning techniques have been developed over the
years. We are particularly interested in score-based learning algorithms, which use heuristic search
for approximate structure learning, wherein a search space of possible structures is searched by
applying a scoring function. However, for e�cient structure learning on large-scale distributed
data, it is essential to �rst compute the scoring function on the data in a scalable and e�cient manner,
which is the focus of this work.

To motivate the problem at hand, let us consider tweets posted by users of Twitter. Tweets
exemplify massive, heterogeneous, loosely structured data on the Web. Twitter has more than 500
million users, and every day more than 400 million tweets are posted by users. Tweets are publicly
available, have 100+ attributes, and attribute values can be missing and noisy. New attributes may
appear in tweets, and not all attributes may be present in all of them. Hashtags (e.g., #baseball,
#uselection, #fashionpolice) are used frequently by users in tweets to indicate speci�c topics
or categories. There are thousands of hashtags in use today. A Bayesian approach to modeling
tweets [41, 61] has several use cases including automatic topic labeling, clustering, identifying
causality among tweets, predicting the popularity of tweets/hashtags, detecting latent events, and
so on. A BN can be learned on hashtags and other attributes such as users mentioned in a tweet,
timezone, geo-location, language, retweet status of a tweet, etc. Probabilistic reasoning queries can
also be posed on tweets using BNs for the above use cases.

Example 1.1. Consider a large dataset of tweets. Let us model the tweets using binary random
variables. Let t1, . . . , tn denote n hashtags of interest. We de�ne n binary random variables, one for
each hashtag. For each tweet, if hashtag ti is present, then Ti = 1, and Ti = 0 otherwise. Now we
build a BN on T1, . . . ,Tn . Let Figure 1(a) denote the learned structure of the BN. (Only T1, . . . ,T9
are shown for simplicity.) Each node/variable in the BN has a conditional probability distribution.
An example is shown in Figure 1(a) for T1.

We can perform probabilistic reasoning queries on the BN. Suppose we wish to predict the
probability that a tweet has hashtag ti given that hashtags tj , tk , and tl are present, absent, and
present, respectively. We can pose a query Pr(Ti = 1|Tj = 1,Tk = 0,Tl = 1) on the BN. Let us extend
ourmodel by including amultinomial random variableR for attribute retweeted_count in each tweet.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 2 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:3

(a) (b)

Fig. 1. (a) An example of a BN on variablesT1, . . . ,Tn . (b) Data instances for the variablesT1, . . . ,Tn distributed
across four cluster nodes.

After learning a new BN on the random variables, suppose we wish to predict the popularity of a
tweet based on retweeted_count given the presence, absence, and presence of hashtags ti , tj , and tk ,
respectively. We can pose a maximum a posteriori query argmaxr Pr(R = r |Ti = 1,Tj = 0,Tk = 1),
whose output can be used to estimate the most likely value of retweeted_count, and hence the
tweet’s popularity.

We formulate the task of score computation on large-scale distributed data as a scalable data
aggregation problem. This is because score computation, which will be formally introduced in
Section 2, requires computing the frequency counts of di�erent values of a random variable and its
parents (a.k.a. su�cient statistics) on the entire dataset. The key contributions of this work are as
follows.

• We propose a novel approach called DiSC (Distributed Score Computation) for fast approxi-
mate score computation over large-scale distributed data. The key features of DiSC are: (a)
decentralized score computation using the principle of gossiping; (b) lower resource con-
sumption via a probabilistic approach for maintaining scores using the properties of a Markov
chain; and (c) e�ective distribution of tasks during score computation (on large datasets) by
synergistically combining consistent hashing and locality sensitive hashing (LSH).

• We conduct theoretical analysis of DiSC in terms of convergence speed (for a given accuracy
and con�dence bound) of the su�cient statistics required for score computation, and memory
and network bandwidth consumption. We also discuss how DiSC is capable of e�ciently
recomputing scores when new data are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 3 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:4 A. Katib et al.

• Finally, we conducted a comprehensive performance evaluation of DiSC on a 16-node cluster
setup on CloudLab [3]. We compared DiSC with the MapReduce-style computation (imple-
mented using Apache Spark) to compute the frequency counts for score computation. We
used datasets with di�erent characteristics containing up to 200M data instances/records
each for the evaluation. When the MapReduce-style computation provided exact values
of frequency counts needed to compute scores, it was nearly 10 times slower than DiSC.
Although it ran faster on randomly sampled datasets than on the entire datasets, it performed
worse than DiSC in terms of accuracy. DiSC computed approximate values of frequency
counts but achieved high accuracy (below 6% average relative error) in estimating them on
all the tested datasets. Thus, DiSC provides a feasible tradeo� between computation time
and accuracy for fast approximate score computation on large-scale distributed data.

The rest of this paper is organized as follows: Section 2 provides background and motivation for
this work; Section 3 introduces DiSC and discusses a basic approach and an improved approach to
lower resource consumption; Section 3.5 presents theoretical analysis of DiSC and comparison with
the MapReduce-style computation; Section 4 describes the performance evaluation and comparison
between DiSC and the MapReduce-style computation; and �nally, we provide our concluding
remarks in Section 5.

A preliminary version of this work appeared in the AAAI 2017Workshop on Distributed Machine
Learning [52].

2 BACKGROUND AND MOTIVATION
2.1 Score-Based Learning of BNs
Over the last few decades, several advances have been made in score-based learning algorithms [36].
At each step in the search, the algorithm attempts to improve the overall score of the BN by
modifying the DAG structure via local steps such as edge deletion, addition, reversal, etc., and
computing a score di�erence of the a�ected variables. Di�erent search strategies (e.g., greedy
hill-climbing, simulated annealing) can be used, and when the network score does not improve
further, the algorithm terminates. If the structure is known, parameter estimation is done by
computing su�cient statistics over the data in one pass (e.g., parameters of a Dirichlet distribution
for a multinomial random variable).
We provide a brief discussion on scoring functions and refer the reader to the work by Car-

valho [14], who conducted a comprehensive analysis and comparison of scoring functions for
learning Bayesian networks. Computing a scoring function is a fundamental task during approx-
imate structure learning. The goal is to �nd the best Bayesian network that �ts the data. Let d
denote the data instances/records. Given a scoring function �, one aims to maximize the value of
�(G,d), whereG is a Bayesian network. A scoring function is designed to compute the posterior
probability distribution of G conditioned on d , i.e., P(G |d). The best Bayesian network is the one
that maximizes the posterior probability. As P(d) is the same for all possible networks, it is su�cient
to compute P(G,d). Popular scoring functions are of two types: information-theoretic scoring func-
tions (based on information theory) and Bayesian scoring functions [14]. These scoring functions
are decomposable in the sense that they can be computed by �rst computing the individual score
of a variable given its parent. Our work in this paper applies to a broad class of decomposable
scoring functions proposed in the literature that require computing the su�cient statistics over the
data, which is essentially a set of frequency counts of how many data instances have a particular
assignment of values for a variable and its parents in a Bayesian network.
As a motivating example, let us consider the Bayesian Dirichlet equivalence (BDe) scoring

function [14, 36]. Suppose Xi denotes a multinomial random variable and Val(Xi) denotes the

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 4 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:5

set of possible values of Xi . Let x ji 2 Val(Xi) denote a possible value of Xi . Let PaGXi
denote the

parents of Xi in a DAG G. Note that Xi |PaGXi
is also called a family. Suppose Val(PaGXi

) denotes
all possible con�gurations of PaGXi

(i.e., assignment of values to the parents). Let ui 2 Val(PaGXi
)

denote a particular con�guration of Xi ’s parents. We will useM[·] to denote the frequency counts
computed over the data instances d . For each con�guration ui , let M[ui] =

Õ
x ji 2Val (Xi)

M[x ji ,ui],

where the tuple containing allM[x ji ,ui] is referred to as the su�cient statistics (i.e., the number of
data instances where Xi = x ji with parent con�guration ui). Let �Xi |ui =

Õ
x ji 2Val (Xi)

�x ji |ui
denote

the prior parameters of the Dirichlet distribution. The BDe scoring function is stated as follows:

score(Xi |PaXi , d) =
÷

ui 2Val (PaGXi)

�(�Xi |ui)
�(�Xi |ui +M [ui])

⇥
 ÷
x ji 2Val (Xi)

�(�x ji |ui
+M [x ji , ui])

�(�x ji |ui
)

!
. (1)

Note �(n) = (n � 1)!. The total score of a DAG G for X1, . . . ,Xn on d is the product of the
family scores, i.e., score(G,d) =Œn

i=1 score(Xi |PaXi ,d). (The logarithm of the total score is usually
computed to replace all the products and divisions by sums and di�erences. This makes it easier
to compute the scoring function during learning.) During learning, we only need to compute the
change in the score due to the DAG operations. When data instances are distributed, computing
the required su�cient statistics for the family scores is challenging; this challenge is the motivation
for our work.
Example 2.1. Consider the BN shown in Figure 1(a). Let the data instances for the variables

T1, . . . ,Tn be distributed on four cluster nodes as shown in Figure 1(b). Consider the familyT1 |T3,T8.
The su�cient statistics for T1 |T3 = 0,T8 = 0 is (1,2), because there is 1 data instance with T1 = 0,
T3 = 0, and T8 = 0 (i.e., on node 4) and 2 instances with T1 = 1, T3 = 0, and T8 = 0 (i.e., on nodes 2
and 3). Similarly, the su�cient statistics for T1 |T3 = 1,T8 = 0 is (3,1). Once the required su�cient
statistics are available, the family score of T1 |T3,T8 can be computed using Equation 1.
If the structure of a BN is given/known, then the parameters of the conditional probability

distributions that best �t the observed data need to be learned. This also requires computing the
su�cient statistics of families e�ciently and becomes challenging on massive datasets when a
large number of variables are present in the BN.

2.2 Parallel BN Learning
Due to the computational complexity of BNs, parallel algorithms were proposed for structure
learning of BNs on high-performance computing platforms and shared-memory architectures [37,
47, 49]. Recently, parallel methods for scalable BN learning and reasoning using the MapReduce
paradigm were proposed for a shared-nothing cluster [11, 15, 22, 57, 65]. More recently, Arias et
al. [9] developed parallel versions of Bayesian network classi�ers (e.g., Tree Augmented Naive
Bayes, k-Dependence Bayesian classi�er) by computing multidimensional contingency tables using
the MapReduce paradigm on Apache Spark [64]. One may wonder whether we can simply develop
a parallel algorithm to compute the family scores using the map and reduce operations in Apache
Spark. This can be done by identifying all possible families that may be needed during structure
learning and partial counts on individual data blocks (in the map phase) and computing the required
su�cient statistics for each family (in the reduce phase). As shown by the results reported later in
Section 4, the MapReduce-style of computing su�cient statistics is very slow and time consuming.
Furthermore, the batch-oriented nature of MapReduce requires complete re-execution when new
data instances are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 5 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:6 A. Katib et al.

2.3 Distributed Machine Learning Frameworks
In recent years, there has been much interest in developing scalable distributed machine learning
frameworks given the growing number of use cases in the industry. GraphLab [42] exploited
common patterns in machine learning algorithms such as sparse computational dependencies and
asynchronous iterative computation. Its e�cacy was demonstrated on parameter learning and
inference in Markov Random Fields, Gibbs sampling, and other machine learning tasks. GraphLab
was later extended to operate in a distributed environment with reduced network congestion and
latency, and support for fault-tolerance [43]. MLlib [46], a library of Apache Spark, provides scalable
implementations of common machine learning algorithms using Apache Spark and its primitives.
Another recent framework is the Parameter Server [40], which was developed to scale distributed
machine learning algorithms. It proposed an e�cient way to aggregate and synchronize model
parameters in a distributed setting using asynchronous communication and �exible consistency
models. Its e�cacy was demonstrated on Sparse Logistic Regression, Latent Dirichlet Allocation,
and Distributed Sketching. Recently, Petuum [63] was developed for scaling both data-parallel
and model-parallel machine learning algorithms by considering properties such as error tolerance,
dynamic structure, and nonuniform convergence. Its bene�t was demonstrated on tasks such as
topic modeling, deep learning, and Lasso regression.
SystemML [12, 25] proposed a declarative, high-level language for writing machine learning

algorithms. E�cient execution plans were generated for these algorithms using SystemML’s cost-
based optimizer. The algorithms were executed on top of data parallel frameworks such as Apache
Hadoop’s MapReduce and Apache Spark. A few systems have been proposed to integrate statistical
machine learning with a DBMS for improved performance and e�ciency (e.g., MADlib [29], UDA-
GIST [39]). Recently, Edward [60] was developed for probabilistic modeling on large datasets
using TensorFlow [8]. Edward enables a user to build a model of a phenomena (e.g., using directed
graphical models and neural networks), reason about the model, and criticize how well the model
�ts of the data. Edward can exploit GPUs for parallelism. AMIDST [44] is a Java toolbox for scalable
probabilistic machine learning and allows a user to build probabilistic graphical models and perform
scalable inference. To process large data streams and large-scale datasets, AMIDST employs Apache
Flink [23] and Apache Spark [58]. Using a Bayesian approach of updating a model as new data
arrive, AMIDST avoids relearning a model from scratch when new data arrive.

Whereas prior e�orts focused on scaling a broad class of machine learning algorithms, our goal
is centered around fast approximate score computation, a fundamental task during BN structure
learning, on large-scale distributed data. Like others, we also aim for a scalable and fault-tolerant
solution, which is highlighted next.

2.4 Gossip Algorithms
Gossip algorithms are used by companies such as Amazon and Facebook to build global-scale
computing systems like Dynamo [20] and Cassandra [38]. They are also being used in the blockchain
technology for scalable data dissemination among peers [30]. They are attractive in large-scale
distributed systems due to their simplicity, decentralized nature, high scalability, ability to tolerate
failures, and ability to provide probabilistic guarantees. Prior work on gossip algorithms have
mainly focused on information exchange (or rumor spreading) [21, 24, 33] and computing aggregates
(and separable functions) [13, 32, 34, 35, 48]. The essence of these algorithms lies in the exchange
of information or aggregates between a pair of nodes, using a probability transition matrix for
the given network topology. Previous studies have shown that after a provably �nite number of
rounds/time intervals and a provably �nite number of message exchanges, the information reached
all the nodes or the aggregates converged to the true value.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 6 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:7

In this work, we draw inspiration from a state-of-the-art gossip algorithm proposed by Mosk-
Aoyama and Shah [2, 48] to compute the sum of values stored on n nodes. We call this algorithm SUM.
Let P = [Pi j] denote a (doubly stochastic and symmetric) probability transition matrix, where Pi j is
the probability that node i contacts node j during gossip. Each node has a local clock that ticks at the
times of rate 1 Poisson process. Letxi denote the value at node i . Each node i maintains r independent
exponential random variables with rate xi , say El i where l = 1 to r . A node becomes active when
its local clock ticks, selects a neighbor with probability Pi j , and then they exchange their current
state. It computes for l = 1 to r ,ml = minni=1 El i . Note that the minimum of a set of exponential
random variables is an exponential random variable with rate equal to the sum of the rates of the
exponential random variables in the set. Finally, SUM uses rÕr

l=1ml
as the estimate of

Õn
i=1 xi . Suppose

TSUM (�,� , P) is the smallest time at which all nodes have computed the sum such that the estimate
is within � of the true sum with probability at least 1 � � . (This is called the convergence speed.)
By choosing r = �(��2(1 + ��1)), it was shown that TSUM (�,� , P) = O

⇣
lo� n + lo� ��1 + lo� ��1

� 2�(P)

⌘
,

where �(P) denotes the conductance of the communication topology. Thus, if higher accuracy or
con�dence is desired by SUM, then a higher value of r must be chosen. When r is increased, the
number of exponential random variables maintained at each node also increases along with the
size of messages exchanged during gossip.

2.5 Challenges and Motivation
There are several technical challenges that must be addressed to develop a scalable score computa-
tion approach over large-scale distributed data. First, data blocks are distributed across nodes in
a cluster. Therefore, it is pragmatic to move computations to data [19]. Second, the score compu-
tation should be e�cient and scalable, tolerate failures and changes to the cluster topology, and
provide provable guarantees on the accuracy of the estimated su�cient statistics. This requires
fast aggregate computation (e.g., sum) over distributed data, e�ective load balancing of tasks, and
redundancy to cope with failures. Although a straightforward application of SUM sounds promising,
it unfortunately does not yield a scalable solution for score computation of families. (We provide
more details in Section 3.2.) Therefore, we must design a new algorithm by adapting SUM. Third,
when new data are produced, e�cient recomputation of family scores over a large dataset is needed
for faster relearning compared to a batch-style approach.
Every data instance/record in the dataset/table will contribute to the su�cient statistics of a

family either as a zero or larger value. Hence, every node in the network is involved in computing
the su�cient statistics to avoid moving the data to a central location. One may wonder if we can
partition the dataset vertically. However, this will introduce additional complexity when a family
spans variables across di�erent partitions. Shu�ing of data will be required. Hence, it is better to
horizontally partition the dataset, where an entire data instance is on a single machine.

3 OUR APPROACH
In this section, we present DiSC and explain the key ideas that underpin its design. We also
present the theoretical analysis of DiSC w.r.t. convergence speed, memory and network bandwidth
consumption, and score recomputation when new data are available. DiSC addresses two key issues
to achieve fast approximate score computation: (1) distribution of families across cluster nodes
for load balancing and (2) approximate score computation of families in an e�cient, scalable, and
fault-tolerant manner. DiSC can be viewed as a black box (by di�erent score-based BN learning
algorithms) to provide an estimate of family scores over large-scale distributed data. Table 1 lists
the frequently used notations in the remainder of the paper.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 7 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:8 A. Katib et al.

Notation Description
f =
X |PaX

A family f where X is a random variable
and PaX is the set of parents

|Val(X)| Number of possible values of X
|Val(PaX)| Number of possible con�gurations of PaX
Ni A node in the cluster
[sNi , eNi] The interval assigned to Ni in consistent

hashing address space
FNi The family list of the cluster node Ni
L The hash function that combines LSH and

consistent hashing
k Number of hash values output by L
hjf The jth hash value output by L
� Conductance of a network of cluster nodes
O, Pf , Qf Doubly stochastic transition matrices
� f =
[� 1

f . . . �
n
f]

A row matrix denoting the stationary dis-
tribution of a Markov chain with n states
for family f

D Number of distinct families in the network
SSAf Su�cient statistics array of the family f
Eif [·] An array of exponential random variables

for a counter in SSAf
1 � � Desired con�dence of an estimate via gos-

sip
1 � � Desired accuracy of an estimate via gossip
TSUM Convergence speed of SUM
TDiSC Convergence speed of DiSC

Table 1. Table of notations

3.1 Distribution of Families
Given a cluster with n nodes, we assume they are connected by an overlay network, where any two
nodes can communicate with each other in a �nite number of hops (e.g., using a Distributed Hash
Table (DHT) [59]). The decomposability property of the Bayesian scoring function (e.g., Equation 1)
enables us to achieve distributed score computation. There are two issues that arise. First, we
must distribute the task of computing the scores of families across the cluster nodes in a scalable,
load-balanced, and fault-tolerant manner. This implies that when the learning algorithm is running
on a cluster node, the score of a family may not be available locally and requires communication
with another cluster node. Thus, the second issue is to allow a cluster node to manage similar
families so that we can minimize the number of network lookups during BN learning.

We address the above issues by synergistically combining consistent hashing [59] and LSH [31].
In consistent hashing, only a �nite fraction of the keys needs to be redistributed when there is
a change in the size of the hash table (or cluster) allowing DHTs to scale. Using LSH, data items
that are more similar are more likely to produce collisions. We can design LSH for sets using k ⇥ l
random linear hash functions as follows [27]. For each linear hash function, apply it on each item
in a set and compute the minimum of the hash values. Create k groups each with l minimum hash

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 8 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:9

values; concatenate l minimum values in each group and apply another hash function (e.g., SHA-1)
to produces a value in the integer range [0,m]. Finally, produce a total of k values for a set. Let
{h1S1 , . . . ,h

k
S1 } and {h1S2 , . . . ,h

k
S2 } denote the outputs of LSH on sets S1 and S2, respectively. Prior

work has shown that if the similarity (i.e., Jaccard index) between S1 and S2 is p, the probability
that there exists at least one pair of identical hash values is 1 � (1 � pl)k , i.e., hiS1 = h

i
S2 (1 i k).

Similar to a DHT, let N0,..., Nn�1 denote the n cluster nodes mapped to a m-bit hash address space.
We partition the address space [0, 2m � 1] equally among the cluster nodes. Let [sNi , eNi] denote
the interval assigned to Ni . (A similar method of assigning ranges is used by Cassandra [38] and
Dynamo [20].) Let L denote LSH on a set that produces k hash values in the range [0, 2m � 1] (e.g.,
using SHA-1 or MD5). Given a family f = X |PaX , we �rst represent it as a set of random variables
{X } [PaX . Let {h1f , . . . ,hkf } denote the k hash values output by L({X } [PaX). We assign f to
every cluster node whose assigned interval contains any hjf , where 1 j k . Through consistent
hashing, we distribute the families almost evenly across nodes in a cluster. Through LSH, we can
ensure that two similar sets/families are assigned to the same node with high probability. This will
be useful to a score-based learning algorithm when retrieving the scores of similar families. Due to
k values output by LSH, multiple cluster nodes will be assigned a family and are responsible for
computing the score of that family. Thus, DiSC can cope with node failures for high availability.

Example 3.1. An example of assignment of families is shown in Figure 2(a). Cluster nodes
N0, . . . ,N7 are assigned intervals in the hash address space. Suppose there are four families f1 =
X1 |PaX1 , f2 = X2 |PaX2 , f3 = X3 |PaX3 , and f4 = X4 |PaX4 . Let L produce k = 2 hash values. Therefore,
each family is assigned to two nodes in the cluster. Suppose the set representations of {X1} [PaX1

and {X4} [PaX4 have high similarity. As shown in the �gure, N0 is assigned both f1 and f4 due to
the property of LSH.

Once the families are assigned to cluster nodes, it is possible to apply a gossip algorithm such
as SUM to compute the su�cient statistics of the families. For this, we must maintain an array of
counters for each family and perform gossiping. However, this will lead to an undesirable scenario
in which every node ends up tracking every family, as shown in Figure 2(b). This has shortcomings
for the following reasons: each node will have to spend more resources maintaining the families
and exchange large messages during gossip. Similar observations were reported in XGossip [54–56],
albeit for a di�erent problem and gossip algorithm. So, it is desirable to have families distributed in
the manner shown in Figure 2(c), which is the ultimate goal of DiSC.
Next, we show a basic approach to compute scores in DiSC using SUM and point out the afore-

mentioned shortcomings. Then, we improve DiSC using our idea of probabilistically dropping
families during gossip.

3.2 A Basic Approach for Gossip-Based Score Computation
The next challenge is to compute the scores of families in a scalable manner on large distributed
data. We need to compute the su�cient statistics of each family. Once we have the su�cient
statistics of a family, Equation 1 can be used to compute the score of the family. We �rst present a
basic approach for computing su�cient statistics by applying SUM (Section 2.4) over all the families
of interest. Suppose there are n cluster nodes. Each node Ni stores the families assigned to it in its
family list FNi . In the family list, for each family f , a 2D array of size r 0 ⇥ c 0 is maintained, where
r 0 = |Val(X)| and c 0 = |Val(PaX)|. Each element in this 2D array contains a list of r exponential
random variables needed to estimate a value in the su�cient statistics of a family. We call this 2D
array the su�cient statistics array (SSA) of f denoted by SSAf . Figure 3 shows an example of a
family list.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 9 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:10 A. Katib et al.

(a) Initial assignment of families to the cluster nodes

(b) An undesirable scenario where all the nodes track all the families

(c) A desirable scenario

Fig. 2. Assignment of families during gossip

Next, we present the basic approach to compute scores in DiSC. First, each family is assigned to
cluster nodes by invoking Algorithm 1. Depending on the value of k , hash values are constructed

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 10 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:11

Fig. 3. An example of a family list at a node

for the family (Line 2). For each hash value, the family is routed to the node for that hash value
(Line 4). That node adds the family to its family list and initializes the SSA (Line 5).

Algorithm 1 AssignFamily(f)
1: Let f = X |PaX
2: {h1f , . . . ,hkf } L({X } [PaX)
3: for j=1 to k do
4: Route f to the cluster node Nl that is responsible for hjf , i.e., h

j
f 2 [sNl , eNl]

5: Add f to the family list FNl of Nl and set SSAf to NULL

Algorithm 2 shows the actions performed by every cluster node. Consider node Ni . It �rst initial-
izes the SSAs for every family in FNi by using local data instances and generating the exponential
random variables for the partial su�cient statistics of the family by invoking InitLocalState(·)
(Lines 2-4). The local clock is initialized as a rate 1 Poisson process (Line 6). (The speci�c implemen-
tation of the local clock is shown later in Section 4.) When its local clock ticks, it becomes active
during gossiping and does the following steps: Pick a neighbor Nj with probability Oi j (Line 8).
Exchange between Ni and Nj the SSAs of the families in their family lists (Lines 9-10). (Note all the
families in their family lists are exchanged.) For each family in the family list of Ni , the minimum
is computed for the exponential random variables for each element of the SSA of the family in FNi

(Lines 11-17). Finally, those families in FNj that are not in FNi are added to FNi along with their
SSAs (Lines 18-19).

Algorithm 4 lists the steps performed by a cluster node when it is receives messages from other
nodes during gossiping. If the family in a received message is not in the family list of the receiving
node, then the node initializes the SSA of the family (using any local data blocks) (Lines 4-6). The
node responds to the sender with the SSAs of the families in its family list (Line 7). Next, for the
families in the family list, the minimum of the exponential random variables for each element in an
SSA is computed (Lines 8-13).

Example 3.2. Consider a cluster with 3 nodes, N1, N2, and N3 as shown in Figure 4(a). Let {d1,d2},
{d3,d4}, and {d5,d6} denote the data instances stored on N1, N2, and N3, respectively. Let f1 = X1 |Y1
and f2 = X2 |Y2 denote two families on binary random variables. Suppose we need to compute the
su�cient statistics of f1 and f2 using DiSC. As shown in the �gure, N1 is responsible for f1; N2 is
responsible for f2. The exponential random variables in the SSAs for these families is also shown.
Let r = 1 (i.e., the number of exponential random variables per counter). Let aijk denote the value

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 11 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:12 A. Katib et al.

(a) Initial values of exponential random variables in the SSAs

(b) Gossip between N1 and N3

(c) Updated exponential random variables after gossip

Fig. 4. Steps during gossip

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 12 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:13

Algorithm 2 DiSC-Basic-Send()
1: Let Ni denote the cluster node executing this procedure
2: for all f 2 FNi do
3: SSAf InitLocalState(f)
4: Store SSAf for f in FNi

5: Let O denote the doubly stochastic symmetric transition matrix for the n cluster nodes, s.t.
Oi j =

1
n

6: Initialize rate 1 Poisson process at node Ni as the local clock for gossiping
7: for each local clock tick do
8: Pick a neighbor Nj with probability Oi j
9: Send exponential random variables in SSA for families in FNi to Nj
10: Receive exponential random variables in SSA for families in FNj from Nj
11: for each family f 2 FNi do
12: for each element e 2 SSAf do
13: Let Eif denote the list of exponential random variables for e in SSAf

14: Let E jf denote the list of exponential random variables for e received from Nj

15: if E jf , null then
16: for q = 1 to r do
17: Eif [q] min(Eif [q],E

j
f [q])

18: for all family f 0 2 FNj s.t. f 0 < FNi do
19: Add f 0 and its SSA to FNi

Algorithm 3 InitLocalState(f)
1: Read local data and compute the counts for f and store in a 2D array
2: for each counter in 2D the array do
3: Let � denote the value of the counter
4: Generate the list of r independent exponential random variables with rate � and store in

SSAf
5: return SSAf

of the exponential random variable for the frequency count of X1 = j |Y1 = k on the data instances
stored at Ni . Similarly, bijk is for X2 = j |Y2 = k on Ni .

Next, we show how the gossip phase works. Suppose the local clock of N1 ticks �rst. Let N1 pick
N3 to exchange the state. As shown in Figure 4(b), N1 and N3 exchange the exponential random
variables. N3 has to compute a300, a

3
01, a

3
10, and a311 over {d5,d6}. N3 learns about f1 from N1 and

updates its family list. As shown in Figure 4(c), N1 and N3 compute the minimum of a1i j and a
3
i j

after exchanging state.
After several clock ticks, the nodes reach a state as shown in Figure 5(a). The �nal values of

ai j and bi j are shown in Figure 5(b). Each node maintains the SSAs for f1 and f2. The estimates
of the su�cient statistics of f1 (on any node) are (1

a00 ,
1
a01 ,

1
a10 ,

1
a11) because r = 1. In addition, the

estimates of the su�cient statistics of f2 (on any node) are (1
b00 ,

1
b01 ,

1
b10 ,

1
b11). ⇤

Next, we state results on the convergence of DiSC and the size of the family list at each node.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 13 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:14 A. Katib et al.

Algorithm 4 DiSC-Basic-Receive()
1: Let Nj denote the cluster node executing this procedure
2: while new message is received do
3: for each family f in the message do
4: if f < FNj then
5: SSAf InitLocalState(f)
6: Store f and SSAf in FNj

7: Respond to sender with exponential random variables for the families in FNj

8: for each family f in the message do
9: for each element e 2 SSAf in FNj do
10: Let E jf denote the list of exponential random variables for e in SSAf

11: Let Eif denote the list of exponential random variables for e received from sender Ni

12: for q = 1 to r do
13: E jf [q] min(Eif [q],E

j
f [q])

T������ 3.3. Suppose nodeNi is responsible for computing the score of a family f . LetTDiSC (f , �,�)
denote the smallest time at which Ni can estimate the su�cient statistics for f within a relative error
of � with a probability of at least 1 � � . Then TDiSC (f , �,�) = TSUM (�,� ,O).

Proof. The dissemination speed of a gossip algorithm to compute SSAf will depend on how fast
the state of the nodes are exchanged through the network.DiSC is based on SUMwith the probability
transition matrix O to estimate SSAf . Thus, the convergence speed of DiSC is TSUM (�,� ,O). ⇤

T������ 3.4. Let D denote the number of distinct families and k denote the number of hash values
output by L. The expected value of the size of family list at a cluster node is O(D).

Proof. During gossip, each time a node communicates with another node, its learns any new
families that the other node has. Ultimately, every node learns every distinct family in the network.
Thus, the expected size of the family list at each node is upper bound by the number of distinct
families. ⇤

Unfortunately, a major drawback of the basic approach of score computation in DiSC is that
each node will learn about more families each time it gossips and eventually track the su�cient
statistics of all the families known to the cluster nodes. This will defeat the purpose of gossiping
because of potentially very large number of unique families (e.g., when a dataset has large number
of variables) to compute the su�cient statistics on during learning. As a result, each node will
send large messages through the network during gossip leading to increased network bandwidth
consumption.

3.3 An Improved Approach for Gossip-Based Score Computation
To overcome the above limitations, we develop an improved algorithm by using a probabilistic
approach for guaranteeing a bound on the number of families managed by each node. As shown
in Figure 2(c), we would like each node to manage only a �nite fraction of the families with high
probability. This is achieved using a Markov chain and its attractive properties. A Markov chain is
modeled by t states, s1, . . . , st , where the probability of transitioning from one state to another is
given by a transition matrix T. The stationary distribution of the Markov chain is denoted by a row

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 14 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:15

(a) Final state on all the nodes

(b) Final values of the exponential random variables on all the nodes

Fig. 5. Final state of gossiping

Fig. 6. The function P
f
i j

matrix � = [� 1 . . . � t] s.t. � = �T. Over a long run, the probability of being at a particular state si
converges to the stationary distribution �i independent of the starting state.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 15 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:16 A. Katib et al.

We model the n cluster nodes by a Markov chain with n states. Let us de�ne a few transition
matrices. Let us de�ne O to be a doubly stochastic transition matrix whereOi j =

1
n . For each family

f , let us de�ne Pf , another doubly stochastic transition matrix, s.t. P fi j =
Ø eNj
sNj

N (µ,� 2) dh for i < j ,

where µ =
(sNj +eNj)

2 . (Note that Pf is de�ned to be a symmetric matrix.) That is, for f , we can select

a normal distribution with mean
(sNj +eNj)

2 and some standard deviation � . An illustration of P fi j is
shown in Figure 6. An interesting observation is that Pi j peaks when Nj is responsible for f . In
addition, the total area under the curve of a normal distribution is 1. Finally, let us de�ne Qf to be
a doubly stochastic transition matrix s.t. Q f

i j = Oi j ⇥ P fi j for i , j.
Algorithms 5 and 6 show the steps performed by the improved approach for gossip-based score

computation in DiSC. Algorithm 5 lists the actions performed by every cluster node. Consider
node Ni . Similar to the basic approach, it �rst initializes the SSAs for every family in FNi by using
local data instances and generating the exponential random variables for the partial su�cient
statistics of the family by invoking InitLocalState(·) (Lines 2-4). The local clock is initialized as a
rate 1 Poisson process. When its local clock ticks, it becomes active during gossiping and does the
following steps: Pick a neighbor Nj with probability Oi j . Ni sends the SSAs of all the families in its
family list to Nj . Ni receives the SSAs for the families in its family list from Nj (Lines 9-10). (Note
that this is di�erent from what is done in the basic approach.) The SSAs for every family in FNi is
updated based on the SSAs received from Nj by computing the minimum of the exponential random
variables (Lines 11-17). The next steps involve dropping families probabilistically (Lines 18-26),
which is a major di�erence from the basic approach. A list G is maintained to keep track of families
(and their SSAs) that Nj should be informed to add to its family list after Ni drops them. For each
family f in FNi , if Ni is responsible for f , add f and SSAf to G with probability P

f
jk . Otherwise,

with probability P fjk , remove f from the family list and add f and SSAf to G. Once all the families
are processed, inform Nj to store the families in G in its family list.

This key idea of probabilistically removing a family from the family list of a cluster node during
score computation prevents the family list from growing very large. (See Section 3.5 for a bound
on the size of the family list.)
Algorithm 6 lists the steps performed by every cluster node when it is receives messages from

other nodes during gossiping. If the message received contains exponential random variables
of families, and if a family under consideration is not in the family list of the receiving node,
then the receiving node initializes the SSA of the family (using any local data blocks) by calling
InitLocalState(·) (Lines 4-8). A temporary family list is maintained to keep track of SSAs of families
that are seen for the �rst time by the receiving node. The receiving node responds to the sender
with the SSAs of all the families it knows that are also in the sender’s family list (Line 9). The
receiving node then updates its family list by computing the minimum of exponential random
variables in the SSAs (Lines 10-16). If the message from the sender indicates adding a set of families,
then the receiving node stores them in its family list (Lines 17-20).

3.4 Retrieving Scores During Learning
DiSC can be viewed as a black box by (a serial or parallel version of) a score-based learning algorithm,
wherein it has e�ciently precomputed the su�cient statistics of large number of families required
during learning. When the learning algorithm executes on a cluster node and needs the su�cient
statistics of a family, it will invoke Algorithm 7. The algorithm �rst computes the hash values for
the family by applying L (Line 2). For each hash value, the algorithm contacts the cluster node

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 16 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:17

Algorithm 5 DiSC-Improved-Send()
1: Let Ni denote the cluster node executing this procedure
2: for all each f 2 FNi do
3: SSAf InitLocalState(f)
4: Store SSAf for f in FNi

5: Let O denote the doubly stochastic transition matrix of a Markov chain representing the n
cluster nodes, s.t. Oi j =

1
n

6: Initialize rate 1 Poisson process at node Ni as the local clock for gossiping
7: for each local clock tick do
8: Pick a neighbor Nj with probability Oi j
9: Send exponential random variables in SSA for families in FNi to Nj
10: Receive exponential random variables in SSA for families in FNi from Nj
11: for each family f 2 FNi do
12: for each element e 2 SSAf do
13: Let Eif denote the list of exponential random variables for e in SSAf

14: Let E jf denote the list of exponential random variables for e received from Nj

15: if E jf , null then
16: for q = 1 to r do
17: Eif [q] min(Eif [q],E

j
f [q])

18: G ;
19: for each family f 2 FNi do
20: Let Pf denote a doubly stochastic transition matrix for f as described in Section 3.3
21: if 9j, 1 j k , s.t. hjf 2 [sNi , eNi] then
22: With probability P fi j , add f and SSAf to G
23: else
24: With probability P fi j , remove f and SSAf from FNi and add f and SSAf to G
25: if G , ; then
26: Inform Nj to store families in G

responsible for that hash value to obtain the SSA for the family (Line 5).1 For each element in SSAf
received from a node, the algorithm computes the estimate over r exponential random variables
and stores it in a 2D array denoted by estj (Lines 7-13). Finally, the element-wise median of estimate
arrays serves as the �nal estimate of the su�cient statistics of the family. Because of LSH, it is
more likely for the learning algorithm to retrieve the SSAs of similar families from the same node,
potentially reducing the network latency during learning.

One may wonder how DiSC is bene�cial to a structure learning algorithm and why parallelism is
needed for score computation of families. Suppose we wish to learn the structure of a BN with large
number of variables, namely, X1, . . . ,Xn over large number of data instances distributed across
nodes in a cluster. During structure learning, we need to know the scores of certain families as the
DAG operations are executed. One solution is the learn the score of a family of interest during the
execution of the structure learning algorithm. This would require reading all the data instances each
time a family score is needed. But in a distributed setup and on large-scale data, this could make
the structure learning algorithm wait on computing the su�cient statistics over distributed data.

1In a system like Voldemort, the lookup cost is O(1).

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 17 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:18 A. Katib et al.

Algorithm 6 DiSC-Improved-Receive()
1: Let Nj denote the cluster node executing this procedure
2: while new message is received do
3: if the message contains exponential random variables of families then
4: Ftmp ;
5: for each family f in the message do
6: if f < FNj and f is seen �rst time then
7: SSAf InitLocalState(f)
8: Store f and SSAf in Ftmp
9: Respond to the sender with exponential random variables for the families in the message

that Nj has in either Ftmp or FNj

10: for each family f in the message do
11: if f 2 FNj then
12: for each element e 2 SSAf do
13: Let E jf denote the list of exponential random variables for e in SSAf

14: Let Eif denote the list of exponential random variables for e received from sender
Ni

15: for q = 1 to r do
16: E jf [q] min(Eif [q],E

j
f [q])

17: else if the message indicates storing families then
18: for each f in the message do
19: if f < FNj then
20: Add f and SSAf to FNj

Algorithm 7 GetSu�cientStatistics(f)
1: Let f = X |PaX
2: {h1f , . . . ,hkf } L({X } [PaX)
3: for j = 1 to k do
4: Route f to the cluster node Nl that is responsible for hjf , i.e., h

j
f 2 [sNl , eNl]

5: Receive SSAf for f stored in FNl from Nl
6: Initialize estj to denote a 2D array (with r 0⇥c 0 counters) to store the estimates of the su�cient

statistics of f (from Nl)
7: for each element e 2 SSAf do
8: Let Elf denote the list of exponential random variables for e
9: temp 0
10: for q = 1 to r do
11: temp temp + Elf [q]
12: Let u,� denote the array indices for e in estj
13: estj [u][�] r

temp
14: return element-wise median for the arrays est1, ..., estk

Another solution is to precompute the scores of possible families needed during structure learning2
on large-scale distributed data. It is true that there will be many families that do not get considered
2For instance, we can consider for every variable, a family with up to a certain number of parents.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 18 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:19

during structure learning but are still precomputed. However, if the precomputation of su�cient
statistics can be done e�ciently, it is well worth the e�ort. Therefore, for e�ciency, parallelism and
cluster computing should be exploited. This way the score of a family is readily available to the
structure learning algorithm when updating the overall score due to DAG operations. We therefore
pursue the latter solution of precomputing the su�cient statistics of families for structure learning.

3.5 Theoretical Analysis
3.5.1 DiSC. We present the theoretical analysis of DiSC by considering the following metrics:

(a) accuracy and con�dence of the estimated su�cient statistics of a family, (b) convergence speed
of the gossip algorithm, and (c) memory and network bandwidth requirement during gossip. We
state a theorem on the convergence speed of DiSC to estimate the su�cient statistics of a family.

T������ 3.5. Suppose nodeNi is responsible for computing the score of a family f . LetTDiSC (f , �,�)
denote the smallest time at which Ni can estimate the su�cient statistics for f within a relative error
of � with a probability of at least 1 � � . Then TSUM (�,� ,O) TDiSC (f , �,�) TSUM (�,� ,Qf).

Proof. The dissemination speed of a gossip algorithm to compute SSAf will depend on how fast
the state of the nodes are exchanged through the network. Suppose we use SUM with the probability
transition matrix O to estimate SSAf . Then the convergence speed is TSUM (�,� ,O). In DiSC, we
exchange the SSAs of families with probabilityOi j in Algorithm 5 (Lines 9-10). However, we move a
family from one node to another only with probability Q f

i j = Oi j ⇥ P fi j in Algorithm 5 (Lines 18-26).
(Note thatQ f

i j Oi j for i , j .) Therefore, the dissemination speed ofDiSC cannot be faster than SUM
with transition matrix O. Therefore, TSUM (�,� ,O) TDiSC (f , �,�). However, DiSC is at least as
fast as SUM with transition matrix Qf , because the SSAs are exchanged each time a node i contacts
j with probability Oi j . Therefore, TDiSC (f , �,�) TSUM (�,� ,Qf). ⇤

The next theorem states the expected value of the number of families tracked by each node. This
key property enables DiSC to scale with increasing number of families to consider when learning a
BN.

T������ 3.6. For a family f , let � f = [� 1
f . . . �

n
f] denote the stationary distribution of the Markov

chain with the transition matrix Qf containing n states. Let D denote the number of distinct families
and k denote the number of hash values output by L. Then E(|FNi |) =

Õ
f 2D

� i
f +

kD
n .

Proof. Let us de�ne a binary random variable Yf to indicate the presence or absence of f in FNi .
Suppose Yf = 1 when f 2 FNi and Yf = 0 otherwise. LetU denote a random variable that denotes
the number of families Ni is responsible for via L. We de�ne a random variable Z =

Õ
f 2D

Yf + U ,

an unbiased estimator of |FNi |. Consistent hashing in L ensures that the families are distributed
evenly across the nodes with high probability. Furthermore, L produces k hash values per family.
Thus, over a long run (i.e., clock ticks), E(Z) = Õ

f 2D
E(Yf) + E(U) = Õ

f 2D
� i
f +

kD
n . ⇤

The intuition for the above theorem is that the probability of a family being stored in the family
list of a node will converge to the stationary distribution of the underlying Markov chain. In
addition, a node is also responsible for storing a fraction of all the distinct families due to L.
Next, we discuss the memory and network bandwidth requirement. The SSA of each family

Xi |PaXi is a 2D array of size r 0i ⇥c 0i , where r 0i = |Val(Xi)| and c 0i = |Val(PaXi)|. Over a long run, the
expected number of families stored by a node is given by Theorem 3.6. According to Theorem 3.5,
the number of time steps required by DiSC for convergence of the su�cient statistics of a family is

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 19 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:20 A. Katib et al.

given by TDiSC (f , �,�). Each time step has on an average n clock ticks, one per node [13]. Suppose
each node maintains r exponential random variables per element in the 2D array for a family’s SSA.
During each clock tick, for a family Xi |PaXi , two nodes exchange r ⇥ r 0i ⇥ c 0i exponential random
variables to compute their minimum.

3.5.2 ComparisonWithMapReduce-Style Computation. Hereinafter, we useMR-SS (MapReduce-
based Su�cient Statistics) to denote the MapReduce-style of computing su�cient statistics. We
provide insight on the di�erence between DiSC andMR-SS, in terms of the network bandwidth
consumption. ForMR-SS, we assume a simple model: The map phase is run on all the cluster nodes
to process all the data blocks to produce intermediate key-value pairs. The reducer phase, which
may run on a subset of cluster nodes, needs to receive the intermediate key-value pairs. Thus,
in the worst case, all the intermediate key-value pairs produced during the map phase must be
transmitted across the network. We will assume compression is not used by both approaches.
Let us analyze the process of computing the scores of D distinct families usingMR-SS. In the

map phase, the partial counts for each family f 2 D on each block of data are computed. During
the reduce phase, the su�cient statistics across all the data blocks for each family is obtained
and combined to produce the �nal su�cient statistics for the D families. On a cluster of n nodes
and b data blocks, the map phase will produce intermediate key-value data of size proportional
to n ⇥ b ⇥ Õ

f 2D
(rf ⇥ cf) words, assuming maximum parallelism. During the reduce phase, the

intermediate key-value data must be moved to the reducers through the network. Hence, the
communication cost is O(nbDS), where S is the size of the largest SSA in D.
In DiSC, the number of time steps (involving communication) for estimating the su�cient

statistics of a family is O(lo�(n)
�(Qf)), given a user-speci�ed accuracy, LSH parameters, and other user-

de�ned parameters. Each time step has on an average n clock ticks, one per node [13]. Each clock
tick results in communication. For simpli�cation of analysis, suppose we assume DiSC does not
drop families. Then �(Qf) = �(O) ⇡ 0.5 [2]. For D families, the total communication cost is
O(nlo�(n)DS). As b grows faster than lo�(n) asymptotically, DiSC has lower communication cost
compared toMR-SS.

3.6 Recomputing Family Scores on New Data
Because gossiping can be stopped on the cluster nodes after a period of time and started again,
DiSC can e�ciently recompute the family scores as new data are produced. Unlike AMIDST [44]
that is designed for a streaming scenario where new data arrive continuously, we focus on stored
datasets that may be updated over time but not in real-time. Suppose a new data block with some
number of data instances is added to a cluster node. This node will compute the SSAs for all families
under consideration over the data block using InitLocalState(·). By applying L, a node responsible
for each family can be identi�ed, for example, based on the �rst hash value output by L. Next, the
families can be grouped by the node responsible for them. The SSAs for each group of families
can be sent to the respective node responsible for those families. The receiving node can update
its family list with the SSAs by computing the minimum of exponential random variables similar
to the regular gossip phase of DiSC. Recall that a node responsible for a family never drops the
family during gossip. Once the SSAs are updated by the nodes, all the cluster nodes can continue to
execute DiSC, thereby disseminating the su�cient statistics computed over the new data to other
nodes, resulting in e�cient score recomputation.
In contrast to DiSC, the batch-style processing of MapReduce must process the entire dataset

(with new data) to obtain the new su�cient statistics of the families. As a result, DiSC is better
choice thanMR-SS for score recomputation when new data are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 20 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:21

4 PERFORMANCE EVALUATION
In this section, we report the performance evaluation of DiSC and comparison withMR-SS. We
demonstrate that DiSC provides a feasible tradeo� between computation time and accuracy for
fast approximate score computation on datasets with di�erent characteristics.

4.1 Implementation and Environment
For implementation, we used the Java package for gossip algorithms available online [1, 53]. The
code was compiled using Java 1.8. For MR-SS, we implemented the code in Scala using Scala 2.11.8.
The code was executed using Apache Spark 2.0.2 and Apache Hadoop 2.7.3. We conducted all our
experiments on CloudLab [3], a testbed for cloud computing research and new applications. We ran
all the experiments for DiSC andMR-SS on 16 nodes in the Utah data center of CloudLab. (Spark
was run in the standalone mode on the cluster.) These nodes were con�gured with OpenStack
Mitaka on Ubuntu 16.04. Each node had eight 64-bit ARMv8 cores, 120 GB of �ash storage, and 64
GB RAM. Each node was con�gured with a network link speed of 1Gbps. One node was run as the
controller and the remaining were con�gured as compute nodes. All 16 nodes were used to run the
experiments.

4.2 Local Clock and Exponential Random Variables
For DiSC, we needed a way to generate Poisson processes and exponential random variables. We
implemented local clocks (rate 1 Poisson process) using Algorithm 8 and generated exponential
random variables using Algorithm 9. Note that these algorithms are based on the work done by
McQuighan [45].

Algorithm 8 LocalClock(�, c)
1: Let � denote the rate of Poisson process
2: Let c denote a positive integer (a.k.a. delay constant)
3: Pick a random number x uniformly between 0 and 1
4: � � lo�(1�x)�
5: Sleep for c ⇥ � seconds
6: return

Algorithm 9 ExpRand(�)
1: Let � denote a positive integer and the rate of the exponential random variable
2: Pick a random number x uniformly between 0 and 1
3: � � lo�(1�x)�
4: return �

4.3 MR-SS
Algorithm 10 lists the steps performed byMR-SS to compute the su�cient statistics of families.
The input �le is a CSV (comma-separated values) �le (stored in HDFS) containing the values of the
n binary random variables. Note that f latMap appliesm�MapFunc on a block of lines to produce
a collection of key-value pairs. The key is a family. The reduceB�Ke� appliesm�ReduceFunc to all
key-value pairs with the same key. That is, the partial counts for each family is added to produce
the true count across all the lines in the input �le. The code forMR-SS was written in Scala.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 21 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:22 A. Katib et al.

Algorithm 10MR-SS

1: Let D denote the list of families
2: record_blks read_record_blocks(“/hd f s_f ile”)
3: partialSSA record_blks . f latMap(mapFunc)
4: f inalSSA partialSSA.reduceB�Ke�(reduceFunc)
5: Write f inalSSA to a �le
6: return

7: function mapFunc(blk)
8: Let blk denote a block of records
9: for all f 2 D do
10: Initialize the counter array CAf of size r ⇥ c
11: for all f in D do
12: Compute su�cient statistics of f over b records in rec_blk and store in CAf
13: Output/return key-value pair (f , CAf)
14: end function

15: function reduceFunc(CAa
f , CA

b
f)

16: Let CAa
f and CAb

f denote two counter arrays for the same family
17: Compute CA by performing element-wise addition of CAa

f and CAb
f

18: Output/return CA
19: end function

Note that DiSC andMR-SS both stop at computing the su�cient statistics of families. The scores
can be computed by applying Equation 1.

4.4 Datasets
We conducted the experiments using three synthetic datasets, the HIGGS dataset [10] from the UC
Irvine (UCI) Machine Learning repository [7], and a dataset based on tweets collected from Twitter.
The three synthetic datasets, S1, S2, and S3, each had 100 binary random variables (or features)

and 200 million rows. We generated the data instances for these datasets as follows: For each
dataset, we assumed 5 multinomial random variables, each of which could take 20 distinct values.
We used a binomial distribution B(n,p) to generate the values for each variable, where n is the
number of trials and p is the probability of success in each trial. We set n = 19 for the three datasets
to assign 20 distinct values to each multinomial random variable. A variable was assigned a value k
with probability

�n
k
�
pk (1 �p)n�k . We used p = 0.25 for S1, p = 0.5 for S2, and p = 0.75 for S3 so that

the datasets have di�erent distributions. After generating the data instances for the multinomial
random variables for a particular n and p, we used one-hot encoding to map them into binary
random variables. The su�cient statistics for a family of multinomial random variables can be
computed by examining the counters computed for corresponding binary random variables.

TheHIGGS dataset was based onMonte Carlo simulations and contained 11million data instances,
1 class label (0 or 1), and 28 features. The 21 features were based on properties measured by particle
detectors; 7 features were functions of the 21 features. The 28 features were assigned real numbers
in the dataset. For each feature, we only considered the integer part of a real number assigned to it
and mapped it to a multinomial random variable based on the number of unique integer values for
that feature. For example, if a feature was assigned to �ve values in the dataset, namely, 1.1, -2.2,

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 22 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:23

3.3, -4.4, and -4.2, then this feature was mapped to a multinomial random variable with 4 levels.
We then represented each multinomial random variable as a set of binary random variables using
one-hot encoding. So in total, we had 240 binary random variables for HIGGS. In order to have a
larger dataset for the experiments, we replicated the 11 million instances 16 times.
The Tweets dataset was based on 200 million tweets collected during 2016. We extracted the

language attribute in each tweet along with other Boolean attributes such as isVeri�ed, isPossi-
blySensitive, isRetweeted, isGeoEnabled, and so on. Because the language feature/attribute was a
categorical variable, we used one-hot encoding to convert it to a set of binary features based on the
language value like en, es, jp, fr, ru, and so on. Essentially, the features of this dataset were a set of
binary random variables.

Table 2 summarizes the characteristics of the four datasets we used for the experiments. On each
dataset, the su�cient statistics of 10,000 families were computed. The average number of binary
random variables per family was 3.96 for the synthetic datasets, 5 for the HIGGS dataset, and 3.97
for the Tweets dataset.

Dataset No. of No. of binary No. of File
instances random variables families size

S1 200M 100 10,000 37.2 GB
S2 200M 100 10,000 37.2 GB
S3 200M 100 10,000 37.2 GB

HIGGS 176M 240 10,000 79.0 GB
Tweets 200M 136 10,000 50.7 GB

Table 2. Datasets and their characteristics

4.5 Setup and Evaluation Metrics
DiSC was executed by specifying a time budget after which the gossiping was terminated. One
process was started on each cluster node. After the time budget expired, all the processes were
gracefully terminated. The processes were programmed to output the estimates of the counters for
each family into a log �le. On the other hand,MR-SS was run as a Spark job using the spark-submit
command to use all the 128 cores in the cluster. Both the executor memory and driver memory
were set to 50 GB. We ranMR-SS with LZ4 compression [5], a lossless data compression algorithm,
and Java serializer as well as Snappy compression [6] and Kyro serializer [4]. One executor was
run on each cluster node; each executor used 8 cores on the node.

We compared DiSC and MR-SS by measuring the total wall-clock time to compute the su�cient
statistics of a given set of families on the aforementioned datasets. By design, MR-SS computes
exact su�cient statistics. Nonetheless, we investigated how random sampling of the data instances
in a dataset could speed upMR-SS albeit obtaining approximate su�cient statistics. Suppose we
randomly select t% of the data instances in a dataset. Then we will �rst compute the su�cient
statistics on the samples usingMR-SS. To estimate the true value of su�cient statistics, we will
multiply the estimated counts by 100

t . In the experiments, we computed the accuracy ofMR-SS as
follows: Compute the relative error of each counter in the counter array maintained for a family
(Algorithm 10). Compute the average relative error over all the families. When the entire dataset
was processed byMR-SS (i.e., no sampling), 100% accuracy was achieved.

By design, DiSC computes approximate su�cient statistics. We computed the accuracy of the
estimates of su�cient statistics of the families. We did the following at each cluster node: Compute

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 23 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:24 A. Katib et al.

the relative error of the estimated count for each element of the SSA of a family that the cluster
node is responsible for. Compute the average over all the families that the node is responsible for.
Only the families that a node is responsible for are considered during relative error calculation
at a node, because given a family only the nodes responsible for the family should be contacted
to compute the su�cient statistics estimates. For the time budget, we ran DiSC long enough on
a dataset so that the average relative error computed on each node reached and stayed below
10%. For DiSC, we also measured the total number of messages sent by the cluster nodes during
execution, average message size, percentage of messages lost, and average size of the family lists,
which provided insight into the reduction in the network bandwidth consumption due to dropping
families probabilistically during gossiping.

4.6 Impact of r on the Relative Error of the Estimates in DiSC
As discussed in Section 2.4, the parameter r should be chosen based on the desired accuracy
and con�dence. The value of r will increase when higher level of accuracy/con�dence is desired.
However, by increasing r , we also increase the size of messages exchanged during gossip, and
hence the network communication cost. In DiSC, we maintain r exponential random variables per
element of the 2D array that serves as the SSA for a family. To understand the impact of r on the
accuracy of the estimates of su�cient statistics, we empirically studied the accuracy achieved by
DiSC for di�erent values of r : 40, 80, and 120. To understand the robustness of DiSC, we tested
with di�erent values of k . Note that k controls the level of redundancy by assigning a family to
k cluster nodes during the execution of DiSC. Thus, a family will always be stored/maintained
in the family lists of k cluster nodes and will never be dropped by these nodes. Note that when a
node gossips with another node it may learn new families that are not in its family list. Hence, a
family could be in the family list of � k nodes. If a node fails during execution of DiSC, having
k > 1 is bene�cial so that we do not lose a family permanently. (See Algorithms 1 and 7 where k is
mentioned.) Although in our experiments, we did not have any node failures, we still varied k from
1 to 3 to understand how k impacts DiSC’s performance and resource consumption.

As gossiping progresses in DiSC, the estimate of the su�cient statistics of a family tends to
converge closer to the true value. Hence, we expect the average relative error to decrease and
eventually stabilize at a positive value on each cluster node. The total time budget to execute DiSC
was chosen empirically by observing how soon the relative errors stabilized for our cluster setup
and a delay constant of c = 10 for the local clock (Algorithm 8).

In the interest of space, we show the results for one of the cluster nodes. Similar results were obtained
on the remaining nodes. Let us �rst discuss the results for the synthetic datasets. Figures 7(a)-7(b)
show how the average relative error decreased and stabilized on one of the cluster nodes over time
for S1 given di�erent values of k . Similarly, Figures 7(c)-7(d) and Figures 7(e)-7(f) show how the
average relative error decreased on a cluster node over time for S2 and S3, respectively. (Similar
trends were observed for k = 3.) In each plot, the X-axis denotes the wall-clock time (MM:SS) and
the results are shown from the 9 minute mark, and the Y-axis denotes the % average relative error
computed for the families that the cluster node is responsible for. In general, as r was increased,
the �nal accuracy of DiSC improved and the average relative error of DiSC stabilized to a lower
value by the completion of the time budget. For example, in Figure 7(a), the �nal average relative
error was 7.5%, 5.0%, and 3.9% for r = 40, r = 80, and r = 120, respectively.3

For HIGGS and Tweets, similar trends were observed for the average relative error when r was
increased from 40 to 120. Figures 8(a)-8(b) and Figures 8(c)-8(d) show how the average relative

3Towards the end of the time budget, the red line (r = 80) is usually sandwiched between the blue line (r = 40) and the
black line (r = 120).

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 24 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:25

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

(a) S1, k = 1 (b) S1, k = 2

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

(c) S2, k = 1 (d) S2, k = 2

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

(e) S3, k = 1 (f) S3, k = 2

Fig. 7. Synthetic datasets: impact of r on the average relative error of the estimates computed by DiSC on a
cluster node

error decreased and stabilized at a cluster node for di�erent values of k for HIGGS and Tweets,
respectively. (Similar results were obtained for k = 3.)
In our evaluation, we empirically studied the impact of r on the average relative error of DiSC.

For our cluster setup and all the tested datasets, the average relative error was under 6% by the end
of the time budget for r = 120. So for the remainder of this section, unless necessary, we present
the results achieved by DiSC for r = 120 as this setting yielded the best accuracy. Note that in a
di�erent cluster setup, one would need to choose r based on the desired accuracy/con�dence and
network bandwidth budget as increasing r increases the size of gossip messages in DiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 25 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:26 A. Katib et al.

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

(a) HIGGS, k = 1 (b) HIGGS, k = 2

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

r=40 r=80 r=120

(c) Tweets, k = 1 (d) Tweets, k = 2

Fig. 8. HIGGS and Tweets: impact of r on the average relative error of the estimates computed by DiSC on a
cluster node

DiSC (hh:mm:ss) MR-SS (no sampling)
Dataset Total time k = 1, r = 120 k = 2, r = 120 k = 3, r = 120 (LZ4/Java) (Snap./Kyro)

First Last First Last First Last Total time Total time
node node node node node node (hh:mm:ss) (hh:mm:ss)

S1 0:17:00 0:10:19 0:13:20 0:09:31 0:13:36 0:09:26 0:13:08 02:50:53 02:49:54
S2 0:17:00 0:11:31 0:13:49 0:09:45 0:13:32 0:09:41 0:13:58 02:50:00 02:50:30
S3 0:17:00 0:10:23 0:13:55 0:09:48 0:13:09 0:09:39 0:13:27 02:50:24 02:49:07

HIGGS 0:15:00 0:09:31 0:12:53 0:09:41 0:11:19 0:09:37 0:11:42 02:33:53 02:29:35
Tweets 0:17:00 0:09:14 0:12:50 0:08:49 0:12:00 0:08:44 0:12:50 02:50:38 02:47:31

Table 3. Total wall-clock time (hh:mm:ss) taken by DiSC and MR-SS (no sampling). The times when (in
hh:mm:ss) the first one and the last one among the cluster nodes achieved below 10% average relative error
are also reported.

4.7 DiSC vs MR-SS
Next, we compare DiSC andMR-SS in terms of computation time and accuracy to compute the
su�cient statistics of a given set of families. For every dataset, 10,000 families were considered
during the su�cient statistics computation. As discussed earlier, DiSCwas executed by specifying a
time budget after which gossiping was terminated. WhenMR-SS was executed on an entire dataset,
it provided exact su�cient statistics – 100% accuracy. However, when it was executed on a sampled

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 26 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:27

dataset, it computed approximate su�cient statistics. DiSC provided only approximate su�cient
statistics.

We begin with the case where MR-SS operated on the entire datasets (i.e., no sampling). Table 3
shows the comparison of DiSC andMR-SS in terms of wall-clock time to compute the su�cient
statistics of the families. For S1, S2, and S3, DiSC took 17 minutes for the setting r = 120. However,
MR-SS required 2 hrs 50 mins and was up to 10 times slower than DiSC. We testedMR-SS with LZ4
compression/Java serializer and Snappy compression/Kyro serializer. As shown, both con�gurations
gave similar results. For HIGGS, DiSC required only 15 minutes for the setting r = 120. MR-SS
�nished in nearly 150 minutes and was 10 times slower than DiSC. Note that the HIGGS dataset had
smaller number of data instances as compared to the synthetic datasets. For Tweets, DiSC required
17 minutes for the setting r = 120.MR-SS was nearly 10 times slower than DiSC. Clearly, DiSC
was signi�cantly faster thanMR-SS for approximately computing su�cient statistics of families on
all the �ve datasets. We also observed when the cluster nodes achieved below 10% average relative
error (for the families they are responsible for) when executing DiSC. In Table 3, we report the time
when the �rst one among the cluster nodes achieved below 10% average relative error. We also
report the time when the last one among the cluster nodes achieved below 10% average relative
error. This shows that di�erent cluster nodes see improvement in the accuracy of their estimates of
su�cient statistics over a period of time in a distributed setting. It is fair to conclude that computing
su�cient statistics approximately using DiSC is nearly 10 times faster (in terms of computation time)
thanMR-SS for learning a BN on large-scale distributed data.

Let us closely analyze the accuracy of the su�cient statistics computed by DiSC. Table 4 shows
the average relative error (%) achieved by each cluster node for the di�erent datasets for varying
values of k . Note that all the reported numbers in this table are for r = 120. We highlight two
observations. First, for a given dataset and a particular value of k , every cluster node achieved
similar average relative error on di�erent subsets of families, and, therefore, similar accuracy in
estimating the su�cient statistics. Second, the average relative errors were within 5.9% for the
synthetic datasets, within 2.59% for HIGGS, and within 3.19% for Tweets. DiSC achieved very good
accuracy in estimating the su�cient statistics for all the �ve datasets. The above results demonstrate
the robustness of our approach in estimating the su�cient statistics of families for datasets with
di�erent characteristics.
Next, we report howMR-SS performed on random samples of the datasets. We chose 10%, 8%,

and 4% of the data instances randomly in each dataset to create di�erent sample sizes. Table 5
shows the wall-clock time taken and % average relative error achieved byMR-SS (computed over
all the 10,000 families) to estimate the su�cient statistics on di�erent sample sizes. The table also
shows the results forMR-SS without any sampling. While the time taken byMR-SS signi�cantly
reduced when samples were processed, the accuracy degraded as smaller sample sizes were tested
with. For comparison, we show a representative case of DiSC for k = 1 and r = 120. DiSC achieved
the best accuracy (i.e., lowest relative error) compared to MR-SS executed on the di�erent samples
sizes. For instance, DiSC achieved an average relative error of 2.62% for HIGGS. However, MR-SS
achieved poorer accuracy than DiSC with a much higher average relative error of 9.51% for 10%
sample size. Note that DiSC’s average relative error reported in the table was also computed over
all the 10,000 families for fair comparison. Our evaluation indicates that although MR-SS ran faster
on random samples of the tested datasets than on the entire datasets, it was still slower than DiSC and
performed worse than DiSC in terms of accuracy.

4.8 Convergence Speed of DiSC
We analyzed the convergence speed of DiSC empirically by computing the % average relative error
on each cluster node over time for the tested datasets. (The average relative error was computed

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 27 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:28 A. Katib et al.

Dataset k N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 4.25 4.01 4.35 4.20 4.14 3.76 4.48 4.04 4.42 3.98 4.20 4.07 4.10 3.91 3.97 4.20
S1 2 4.25 4.11 4.14 4.24 4.26 4.12 3.94 3.98 4.19 3.95 4.31 3.97 4.10 4.01 4.11 3.89

3 4.12 4.12 4.21 3.94 4.00 3.87 4.03 4.19 4.09 3.97 4.23 4.05 3.99 3.88 4.14 3.98
1 5.12 5.90 4.94 5.18 5.30 5.56 4.89 5.17 5.43 5.32 5.73 5.44 5.28 5.40 5.54 5.29

S2 2 5.52 5.16 5.23 5.57 5.30 5.56 5.76 5.57 5.52 5.22 5.25 5.16 5.34 5.56 5.59 5.50
3 5.50 5.60 5.51 5.59 5.27 5.01 5.64 5.11 5.51 5.23 5.39 5.27 5.27 5.56 5.28 5.31
1 4.15 3.92 4.28 4.27 4.14 3.82 4.40 4.08 4.38 4.54 4.55 4.43 4.01 4.13 4.20 4.21

S3 2 4.28 4.77 4.74 4.56 4.80 4.40 4.48 4.23 4.98 4.31 4.87 4.46 5.04 4.27 4.52 4.12
3 4.04 3.97 4.29 4.04 4.34 4.12 4.10 4.26 4.20 4.26 4.19 4.10 4.05 4.09 4.44 4.36
1 2.39 2.21 2.17 2.20 2.19 2.53 2.24 2.39 2.44 2.10 2.10 2.59 2.14 2.42 2.33 2.17

HIGGS 2 2.14 2.10 2.11 2.12 2.09 2.08 2.20 2.14 2.08 2.27 2.17 2.09 2.09 2.13 2.12 2.04
3 2.20 2.12 2.12 2.08 2.12 2.13 2.16 2.08 2.12 2.12 2.10 2.11 2.12 2.13 2.05 2.11
1 2.35 2.54 2.53 2.49 2.50 2.73 3.19 2.51 2.69 2.74 2.43 2.37 2.49 2.44 2.43 2.53

Tweets 2 2.39 2.32 2.39 2.35 2.31 2.34 2.39 2.37 2.36 2.36 2.4 2.42 2.34 2.44 2.38 2.34
3 2.49 2.68 2.55 2.55 2.38 2.49 2.45 2.33 2.48 2.51 2.59 2.50 2.45 2.49 2.47 2.69

Table 4. Average relative error achieved (%) by DiSC on each cluster node N1-N16 for varying values of k and
r = 120. The maximum value is shown in bold.

MR-SS DiSC
Dataset No sampling 10% sampling 8% sampling 4% sampling (k = 1, r = 120)

Total Avg. rel. Total Avg. rel. Total Avg. rel. Total Avg. rel. Total Avg. rel.
time error time error time error time error time error

S1 2:50:53 0% 0:51:43 9.78% 0:58:48 9.31% 0:38:46 11.80% 0:17:00 4.13%
S2 2:50:00 0% 0:51:03 10.36% 0:50:54 10.65% 0:49:06 13.88% 0:17:00 5.34%
S3 2:50:24 0% 0:50:41 9.79% 0:51:20 11.25% 0:49:53 13.02% 0:17:00 4.22%

HIGGS 2:33:53 0% 0:28:00 9.51% 0:27:52 9.52% 0:27:40 11.88% 0:15:00 2.62%
Tweets 2:50:38 0% 1:50:59 11.07% 1:56:15 10.58% 1:51:43 13.39% 0:17:00 2.56%

Table 5. Performance of MR-SS by on sampled datasets. The time taken (in hh:mm:ss) is shown along with %
average relative error across all families.

over the families that a cluster node was responsible for.) As gossiping progresses, the estimate of
the su�cient statistics of a family tends to converge to a value that is close to but not exactly the
true value. Hence, we expect the average relative error to decrease and eventually stabilize at a
positive value by the end of the time budget on each cluster node. The accuracy will depend on
DiSC’s parameters such as r , the size of the cluster, time budget, and others. We show the results of
8 nodes, namely, N5-N12 and refer the reader to the Appendix for the results of the remaining nodes.
Figure 9 shows how the average relative error drops over time and stabilizes on nodes N5-N12 for
varying values of k . The average relative error is shown for di�erent wall-clock times starting at the
9-minute mark. Overall, all nodes N1-N16 produced accurate estimates of the su�cient statistics of
families with low relative error by the end of the time budget, which was 17 minutes for S1. Similar
trends were observed for S2 and S3 as shown in Figures 10 and 11, respectively. The average relative
errors were under 6% in all cases. In our implementation of DiSC, the cluster nodes initialized their
local state (i.e., SSAs of families) based on the local data blocks during the initial phase of execution.
A node started exchanging messages once it �nished computing the local state.

Figure 12 shows how the average relative error of the su�cient statistics estimates drops over
time and stabilizes on a set of cluster nodes for HIGGS. The average relative error was within 2.59%
in all cases by the end of the time budget. Finally, Figure 13 shows how the average relative error of

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 28 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:29

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 9. Dataset S1: convergence speed of DiSC on cluster nodes N5-N12 (200M data instances)

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 10. Dataset S2: convergence speed of DiSC on cluster nodes N5-N12 (200M data instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 29 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:30 A. Katib et al.

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 11. Dataset S3: convergence speed of DiSC on cluster nodes N5-N12 (200M data instances)

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 12. Dataset HIGGS: convergence speed of DiSC on cluster nodes N5-N12 (176M data instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 30 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:31

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 5
Node 6

Node 7
Node 8

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 9
Node 10

Node 11
Node 12

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 13. Dataset Tweets: convergence speed of DiSC on cluster nodes N5-N12 (200M data instances)

estimates drops over time and stabilizes for Tweets. The average relative error was within 3.19% in
all cases by the end of the time budget. Overall, DiSC’s convergence speed was fast, and it estimated
the su�cient statistics of families with high accuracy.

4.9 Communication Cost of DiSC
We report the communication cost of DiSC for the �ve datasets by varying the value of k and r .
Table 6 reports the total number of messages sent by the cluster nodes during the execution of
DiSC, % of messages lost during execution, and average message size. Note that these values were
computed over the entire time budget for which DiSC was executed. That is, even though the
average relative error on the nodes stabilized before the end of the time budget, the nodes still
continued to gossip with other nodes till the end of the time budget. Each message sent by a node
was compressed using Snappy compression and delivered through the network as a UDP (User
Datagram Protocol) packet.
Let us �rst analyze the results for the synthetic datasets. As expected, the number of messages

increased as r was increased from 40 through 120 for every dataset due to increase in the total
amount of data to transmit the exponential random variables. Also, as k was increased, the total
number of messages exchanged also increased. Similar to the synthetic datasets, for HIGGS and
Tweets, the total number of messages sent by the cluster nodes increased as r was increased from 40
to 120. Also, the number of messages increased with increase in k . This is a cost to pay for achieving
increased redundancy for fault-tolerance. One may wonder if k > 1 is too much redundancy for
DiSC in the given setup on CloudLab where there were no node failures during execution. While
this is true, our goal was to test the robustness of DiSC as k was increased and gain insights on
how k a�ected the performance of DiSC.

Snappy compression provided signi�cant bene�t to DiSC in all cases. The average compression
ratio for the messages was 40.6%, 27.5%, and 40.5% for S1, S2, and S3, respectively. For HIGGS and

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 31 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:32 A. Katib et al.

Dataset k r = 40 r = 80 r = 120
of % of Avg. # of % of Avg. # of % of Avg.

messages messages message messages messages message messages messages message
sent lost size (bytes) sent lost size (bytes) sent lost size (bytes)

1 297,311 1.81% 36,974.02 589,576 3.44% 36,749.17 888,316 4.04% 36,005.52
S1 2 315,747 2.47% 37,106.94 678,801 2.85% 36,841.08 996,140 3.98% 36,224.52

3 332,108 2.01% 37,224.08 763,833 3.45% 36,891.64 1,059,339 4.13% 36,401.34
1 278,438 2.30% 44,836.29 549,797 3.47% 44,713.73 816,135 3.83% 43,795.38

S2 2 312,434 2.82% 44,979.14 632,803 4.20% 44,782.18 954,651 4.17% 44,139.51
3 364,044 2.48% 45,082.57 674,835 4.32% 44,839.84 1,107,472 4.84% 44,240.76
1 276,018 2.60% 36,997.95 585,358 3.15% 36,787.08 823,924 3.47% 35,972.28

S3 2 317,732 2.29% 37,182.32 659,178 2.74% 36,904.41 988,215 4.36% 36,295.86
3 344,609 2.38% 37,274.98 692,584 2.99% 36,974.82 1,031,404 4.23% 36,497.82
1 191,336 1.93% 39,254.09 366,314 4.06% 38,936.50 610,607 5.20% 38,645.70

HIGGS 2 203,013 2.16% 39,523.69 435,332 4.19% 39,295.28 675,949 4.99% 38,499.67
3 219,964 1.72% 39,632.80 434,236 4.22% 39,478.74 736,433 5.60% 38,468.32
1 134,178 1.61% 48,163.67 284,473 1.38% 48,331.03 420,951 3.06% 47,707.04

Tweets 2 147,556 1.77% 48,423.50 309,644 2.78% 48,543.28 468,153 2.67% 47,950.37
3 148,774 1.33% 48,548.52 308,988 2.93% 48,733.34 481,049 2.69% 48,050.40

Table 6. Total number of messages sent during the execution of DiSC. Each message was compressed and
sent through the network as a UDP packet.

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

. f
am

ily
 li

st
siz

e

Node

k=1 k=2 k=3

Fig. 14. Dataset S1: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

Tweets, the average compression ratio was 64.8% and 61.9%, respectively. We attribute a better
compression ratio for HIGGS and Tweets due to the di�erence in the distribution of su�cient
statistics values for the families between them and the synthetic datasets. Overall, compression
provided signi�cant reduction in the communication cost for DiSC. In hindsight, we could have
modi�ed DiSC’s implementation to pack as many SSAs as possible (after compression) in a UDP
packet. This would have reduced the number of messages exchanged.
Table 6 also reports the percentage of messages lost during the execution of DiSC. DiSC was

able to cope with lost messages while achieving high accuracy due to the inherent ability of gossip
algorithms to tolerate failures.

4.10 Impact of Probabilistically Dropping Families
Next, we study the impact of dropping families probabilistically in DiSC. As stated in Section 3.2,
the basic approach will result in all the cluster nodes learning all the families under consideration.
Thus, the size of the family list on each node will reach 10,000 for the synthetic datasets, HIGGS,
and Tweets.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 32 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:33

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

. f
am

ily
 li

st
siz

e

Node

k=1 k=2 k=3

Fig. 15. Dataset S2: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

. f
am

ily
 li

st
siz

e

Node

k=1 k=2 k=3

Fig. 16. Dataset S3: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

. f
am

ily
 li

st
siz

e

Node

k=1 k=2 k=3

Fig. 17. Dataset HIGGS: reduction in the size of the family list at the nodes due to dropping of families in
DiSC (r = 120)

The improved approach in DiSC, however, drops families probabilistically to control the size of
the family lists on each node. This is because the size of the family list dictates the amount of data
exchanged during gossip, and DiSC aims to lower the network bandwidth consumption. In our
implementation, during gossip, we dropped a family f from the family list of a node Ni (assuming
that Ni is not responsible for f) with probability 0.8 if the neighbor Nj selected to send a gossip
message is responsible for f . Otherwise, we dropped with a lower probability of 0.4.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 33 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:34 A. Katib et al.

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
vg

. f
am

ily
 li

st
siz

e

Node

k=1 k=2 k=3

Fig. 18. Dataset Tweets: reduction in the size of the family list at the nodes due to dropping of families in
DiSC (r = 120).

0

20

40

60

80

100

20 30 40

%
 re

du
ct

io
n

in
 b

an
dw

id
th

co
ns

um
pt

io
n

Delay Constant

Fig. 19. Reduction in bandwidth due to increase in the delay constant. The results are for the dataset S2 with
r = 120 and k = 2.

Figures 14, 15,and 16 show the average family size on each cluster node achieved during the
execution of DiSC for di�erent values of k on the datasets S1, S2, and S3, respectively. Figures 17
and 18 show the average family size results on each cluster node for di�erent values of k on HIGGS
and Tweets, respectively. As expected, with least redundancy, i.e., k = 1, the size of the family list
at each cluster node tends to be the lowest. Clearly, DiSC’s ability to drop families probabilistically
signi�cantly reduced the size of the family lists on all the cluster nodes compared to what a basic
approach would have achieved.
For all the experiments reported so far, we chose a delay constant c = 10 for the local clock as

shown in Algorithm 8. We decided to slow down the local clock and increase the time interval
between clock ticks by increasing c . As expected, this resulted in lower number of messages sent
during the execution of DiSC, thereby leading to reduction in network bandwidth consumption.
Figure 19 shows the % reduction in bandwidth consumption of DiSC with increase in the delay
constant to 20, 30, and 40 for a representative case. (The results are for the dataset S2 with r = 120
and k = 2.) For c = 20 and c = 30, all the cluster nodes converged to under 10% average relative
error in the given time budget of 18 minutes. However, for c = 40, this was not the case for the
same time budget. Thus, tuning the delay constant is another way to lower the network bandwidth
consumption of DiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 34 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:35

Fig. 20. Comparison of a naive approach and DiSC based on total network bandwidth consumption. We
report the results on the five datasets for k = 1 and r = 120.

4.11 Benefit of Distributing Families Across Cluster Nodes in DiSC
One may wonder how DiSC bene�ts by distributing the families across cluster nodes and dividing
the work among cluster nodes to compute the su�cient statistics of only a subset of families. To
understand this, we compared DiSC with a naive approach of gossiping to compute the su�cient
statistics of families. In the naive approach, we assigned all the 10,000 families to each cluster node
at the beginning. At each gossip round, two nodes exchanged the exponential random variables
for the SSA of every family. No families were dropped probabilistically. Hence, the size of the
family list at each node remained at 10,000. Note that the naive approach also uses gossiping and is
decentralized.

We expect the naive approach to increase the communication cost signi�cantly. This was precisely
observed in our experiments as shown in Figure 20. The communication cost of the naive approach
was between 1.72 to 2.37 times higher than that of DiSC. Thus, DiSC’s approach of distributing the
families among cluster nodes for load balancing and distributed processing of su�cient statistics of
families was superior than the naive approach. In fact, as the total number of families increases,
the naive approach must be run with a much larger delay constant to allow the exchange of SSAs
of all the families during a gossip round leading to slower convergence of the estimates.

4.12 Summary of Performance Evaluation
Below we summarize the key observations of our performance evaluation.

• DiSC provides a feasible tradeo� between computation time and accuracy for fast score
computation on large-scale distributed data. Although it computes approximate su�cient
statistics of families, it was nearly 10 times faster thanMR-SS, which is based on MapReduce-
style computation and computed exact su�cient statistics. Although random sampling of the
tested datasets enabledMR-SS to run faster than on the entire datasets, it was still slower
than DiSC and performed worse than DiSC in terms of accuracy.

• DiSC’s decentralized, gossip-based computation of su�cient statistics provides a robust
approach for computing su�cient statistics of families and achieves very high accuracy (less
than 6% average relative error) on datasets with di�erent characteristics. DiSC can gracefully
tolerate loss of messages during execution.

• DiSC’s approach of probabilistically dropping families provides signi�cant bene�t in reducing
the size of the family lists during execution, thereby reducing the communication cost ofDiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 35 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:36 A. Katib et al.

In addition, a naive approach of maintaining all families at the cluster nodes and gossiping
them without carefully dividing the work among these nodes signi�cantly increases the
communication cost, and thereby validates DiSC’s e�ective design.

5 CONCLUSIONS
Score computation is a fundamental task during structure learning of a multinomial BN. In this
paper, we presented an e�cient approach called DiSC for fast approximate score computation
on large-scale distributed datasets stored in a cluster. DiSC’s novelty is based on the following:
(a) a decentralized algorithm for scalable score computation using the principle of gossiping, (b)
properties of Markov chains and a probabilistic approach to lower resource consumption, and
(c) consistent hashing and LSH for e�ective distribution of tasks for score computation on large
datasets. We presented the theoretical analysis of DiSC in terms of convergence speed (for a given
accuracy and con�dence bound) of the su�cient statistics, and memory and network bandwidth
consumption. We also discussed how DiSC is capable of e�ciently recomputing scores when new
data are available. We conducted comprehensive evaluation of DiSC andMR-SS on datasets with
di�erent characteristics using a 16-node cluster. WhenMR-SS provided exact su�cient statistics
of families, it was nearly 10 times slower than DiSC. Although it ran faster on randomly sampled
datasets than on the entire datasets, it performed worse than DiSC in terms of accuracy. DiSC
achieved high accuracy (below 6% average relative error) in estimating the su�cient statistics of
families on all the tested datasets. Thus, DiSC provides a feasible tradeo� between computation
time and accuracy for fast approximate score computation on large-scale distributed data. The code
and datasets are available at https://github.com/UMKC-BigDataLab/DiSC.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their insightful comments. Part of this work was
performed while the second author (P. R.) held an NRC Research Associateship award at Air Force
Research Lab, Rome, New York. He would like to acknowledge the support of the U.S. Air Force
Summer Faculty Fellowship Program and the University of Missouri Research Board, and the partial
support of the National Science Foundation Grant No. 1747751. The �rst author (A. K.) would like
to acknowledge the support of King Abdullah Scholarship Program (Saudi Arabia).

REFERENCES
[1] Java-gossip. https://code.google.com/archive/p/java-gossip/.
[2] Gossip Algorithms. Foundations and Trends in Networking, 3(1):1–125, 2008.
[3] CloudLab. https://www.cloudlab.us/, 2017.
[4] Kyro. https://github.com/EsotericSoftware/kryo, 2017.
[5] LZ4 - Extremely Fast Compression. https://github.com/lz4/lz4, 2017.
[6] Snappy, a Fast Compressor/Decompressor. https://github.com/google/snappy, 2017.
[7] UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets.html, 2017.
[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensor�ow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–283, Savannah, GA, 2016.

[9] J. Arias, J. A. Gamez, and J. M. Puerta. Learning distributed discrete Bayesian Network Classi�ers under MapReduce
with Apache Spark. Knowledge-Based Systems, 117:16 – 26, 2017.

[10] P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-Energy Physics with Deep Learning.
Nature Commun., 5:4308, 2014.

[11] A. Basak, I. Brinster, X. Ma, and O. Mengshoel. Accelerating Bayesian Network Parameter Learning using Hadoop and
MapReduce. In Proc. of 2012 BigMine Workshop, pages 1–8, 2012.

[12] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Ev�mievski, F. M. Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen,
A. C. Surve, and S. Tatikonda. SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow., 9(13):1425–1436,

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 36 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:37

Sept. 2016.
[13] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algorithms: Design, Analysis and Applications. In Proc. of

INFOCOM 2005, pages 1653–1664, 2005.
[14] A. M. Carvalho. Scoring Functions for Learning Bayesian Networks. Technical report, IST, TULisbon/INESC-ID Tech.

Report 54/2009, Apr. 2009.
[15] W. Chen, T. Wang, D. Yang, K. Lei, and Y. Liu. Massively Parallel Learning of Bayesian Networks with MapReduce for

Factor Relationship Analysis. In Proc. of Intl. Joint Conf. on Neural Networks, pages 1–5, 2013.
[16] D. Chickering. Learning from Data: Arti�cial Intelligence and Statistics V. chapter Learning Bayesian Networks is

NP-Complete, pages 121–130. 1996.
[17] G. F. Cooper, I. Bahar, M. J. Becich, P. V. Benos, J. Berg, J. U. Espino, C. Glymour, R. C. Jacobson, M. Kienholz, A. V.

Lee, X. Lu, and R. Scheines. The Center for Causal Discovery of Biomedical Knowledge from Big Data. Journal of the
American Medical Informatics Association, 22(6):1132–1136, 2015.

[18] N. R. Council. Frontiers in Massive Data Analysis. The National Academies Press, Washington, DC, 2013.
[19] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clusters. In Proc. of the 6th OSDI Conference,

pages 137–150, 2004.
[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s Highly Available Key-Value Store. In Proc. of 21st Symp. on Operating Systems Principles,
pages 205–220, 2007.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In Proc. of the 6th Annual ACM Symposium on Principles of Distributed
Computing, pages 1–12, 1987.

[22] Q. Fang, K. Yue, X. Fu, H. Wu, and W. Liu. A MapReduce-based Method for Learning Bayesian Network from Massive
Data. In Proc. of 2013 APWeb Conference, pages 697–708, 2013.

[23] A. Flink. https://�ink.apache.org, 2017.
[24] C. Georgiou, S. Gilbert, R. Guerraoui, and D. Kowalski. On the Complexity of Asynchronous Gossip. In Proc. of the

27th ACM Symposium on Principles of Distributed Computing, pages 135–144, Toronto, Canada, 2008.
[25] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.

SystemML: Declarative Machine Learning on MapReduce. In Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, ICDE ’11, pages 231–242, 2011.

[26] D. Grossman and P. Domingos. Learning Bayesian Network Classi�ers by Maximizing Conditional Likelihood. In Proc.
of the 21st International Conference on Machine Learning, pages 46–54, 2004.

[27] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating Strategies for Similarity Search on the Web. In Proc. of
the 11th WWW Conference, pages 432–442, 2002.

[28] K. A. Heller and Z. Ghahramani. Bayesian Hierarchical Clustering. In Proc. of the 22nd International Conference on
Machine Learning, pages 297–304, Bonn, Germany, 2005.

[29] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and
A. Kumar. The MADlib Analytics Library: Or MAD Skills, the SQL. Proc. VLDB Endow., 5(12):1700–1711, Aug. 2012.

[30] Hyperledger. http://hyperledger-fabric.readthedocs.io/en/release-1.0/gossip.html, 2017.
[31] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. In

Proceedings of the 13th ACM Symposium on Theory of Computing, pages 604–613, 1998.
[32] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-Based Aggregation in Large Dynamic Networks. ACM Transactions

on Computer Systems, 23:219–252, August 2005.
[33] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized Rumor Spreading. In IEEE Symposium on Foundations

of Computer Science, pages 565–574, 2000.
[34] S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan. E�cient Gossip-Based Aggregate Computation. In Proc. of

the 35th ACM Principles of Database Systems, Chicago, IL, 2006.
[35] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of Aggregate Information. In Proc. of the 44th IEEE

Symposium on Foundations of Computer Science, pages 482–491, Oct 2003.
[36] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.
[37] E. J. Kontoghiorghes. Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, 2005.
[38] A. Lakshman and P. Malik. Cassandra: A Structured Storage System on a P2P network. In Proc. of the 21st Symposium

on Parallelism in Algorithms and Architectures, page 47, Alberta, Canada, 2009.
[39] K. Li, D. Z. Wang, A. Dobra, and C. Dudley. UDA-GIST: An In-database Framework to Unify Data-parallel and

State-parallel Analytics. Proc. VLDB Endow., 8(5):557–568, Jan. 2015.
[40] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling

Distributed Machine Learning with the Parameter Server. In Proc. of the 11th OSDI Conference, pages 583–598, Oct.
2014.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 37 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:38 A. Katib et al.

[41] K. W. Lim, C. Chen, and W. Buntine. Twitter-Network Topic Model: A Full Bayesian Treatment for Social Network
and Text Modeling. In NIPS 2013 Topic Model Workshop, pages 1–5, Australia, 2013.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. GraphLab: A New Framework for Parallel
Machine Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Arti�cial Intelligence, UAI’10, pages
340–349, Catalina Island, CA, 2010.

[43] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A framework for
machine learning in the cloud. In Proc. of PVLDB Conference, pages 716–727, 2012.

[44] A. R. Masegosa, A. M. Martínez, D. Ramos-López, R. Cabañas, A. Salmerón, T. D. Nielsen, H. Langseth, and A. L.
Madsen. AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning. CoRR, abs/1704.01427, 2017.

[45] P. McQuighan. Simulating the Poisson Process. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/
Mcquighan.pdf, 2010.

[46] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin,
M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research, 17(34):1–7, 2016.

[47] S. Misra, V. Md., K. Pamnany, S. P. Chockalingam, Y. Dong, M. Xie, M. R. Aluru, and S. Aluru. Parallel bayesian network
structure learning for genome-scale gene networks. In Proc. of the Intl. Conference for High Performance Computing,
Networking, Storage and Analysis, pages 461–472, 2014.

[48] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for Computing Separable Functions. IEEE Transactions on
Information Theory, 54(7):2997–3007, 2008.

[49] O. Nikolova and S. Aluru. Parallel Bayesian Network Structure Learning with Application to Gene Networks. In Proc.
of Intl. Conf. for High Performance Computing, Networking, Storage and Analysis, pages 1–9, 2012.

[50] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
[51] J. Podesta, P. Pritzker, E. Moniz, J. Holdren, and J. Zients. Big Data: Seizing Opportunities, Preserving Values.

http://www.whitehouse.gov/sites/default/�les/docs/big_data_privacy_report_5.1.14_�nal_print.pdf, 2014.
[52] P. Rao, A. Katib, K. Barnard, C. Kamhoua, K. Kwiat, and L. Njilla. Scalable Score Computation for Learning Multinomial

Bayesian Networks over Distributed Data. In Proc. of the 2017 AAAI Workshop on Distributed Machine Learning (DML),
pages 498–504, San Francisco, CA, 2017.

[53] S. Serbu, E. Rivière, and P. Felber. Network-Friendly Gossiping. In Proceedings of the 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, SSS ’09, pages 655–669, Lyon, France, 2009.

[54] V. Slavov, A. Katib, and P. Rao. A Tool for Internet-Scale Cardinality Estimation of XPath Queries Over Distributed
Semistructured Data. In Proc. of the 30th IEEE International Conference on Data Engineering, pages 1270–1273, Chicago,
USA, 2014.

[55] V. Slavov and P. Rao. Towards Internet-Scale Cardinality Estimation of XPath Queries Over Distributed XML Data. In
Proc. of the 6th International Workshop on Networking Meets Databases, pages 1–8, Athens, Greece, 2011.

[56] V. Slavov and P. R. Rao. A gossip-based approach for Internet-Scale cardinality estimation of XPath queries over
distributed semistructured data. The VLDB Journal, 23(1):51–76, 2014.

[57] SMILE-WIDE. http://smilewide.github.io/main, 2014.
[58] A. Spark. https://spark.apache.org, 2017.
[59] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications. In Proc. of the 2001 ACM-SIGCOMM Conference, pages 149–160, San Diego, CA, Aug. 2001.
[60] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei. Edward: A library for probabilistic modeling,

inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.
[61] W. Wei, K. Joseph, W. Lo, and K. Carley. A Bayesian Graphical Model to Discover Latent Events from Twitter. In Proc.

of the 9th International AAAI Conference on Web and Social Media, 2015.
[62] T. White. Hadoop: The De�nitive Guide. O’Reilly Media, Inc., 1st edition, 2009.
[63] E. P. Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A New Platform

for Distributed Machine Learning on Big Data. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pages 1335–1344, Sydney, Australia, 2015.

[64] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with Working Sets. In
Proc. of the 2nd USENIX Conference on Hot Topics in Cloud Computing, pages 10–10, Boston, MA, 2010.

[65] Y. Zhao, J. Xu, and Y. Gao. A Parallel Algorithm for Bayesian Network Parameter Learning Based on Factor Graph. In
Proc. of IEEE Intl. Conf. on Tools with Arti�cial Intelligence, pages 506–511, 2013.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 38 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:39

APPENDIX
In this section, we show the convergence speed of DiSC on nodes N1-N4 and N13-N16. Figure 21
shows the convergence speed of DiSC on S1. Figure 22 shows the convergence speed of DiSC on S2.
Figure 23 shows the convergence speed of DiSC on S3. Figure 24 shows the convergence speed of
DiSC on HIGGS. Finally, Figure 25 shows the convergence speed of DiSC on Tweets.

Note that N1 was con�gured as the controller node in the cluster and ran slower than the others.
Hence, we notice that the convergence on N1 (blue line) starts later than the other nodes. Recall
that the nodes initially compute the local state (i.e., SSAs of families) based on local data blocks
before beginning the gossip phase.

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 21. Dataset S1: convergence speed of DiSC on cluster nodes N1-N4 and N13-N16 (200M data instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 39 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

X:40 A. Katib et al.

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2
Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 22. Dataset S2: convergence speed of DiSC on cluster nodes N1-N4 and N13-N16 (200M data instances)

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 23. Dataset S3: convergence speed of DiSC on cluster nodes N1-N4 and N13-N16 (200M data instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 40 of 41Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

Fast Approximate Score Computation X:41

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

(a) k = 1, r = 120 (b) k = 2, r = 120 (c) k = 3, r = 120

Fig. 24. Dataset HIGGS: convergence speed of DiSC on cluster nodes N1-N4 and N13-N16 (176M data
instances)

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 1
Node 2

Node 3
Node 4

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

 0
 10
 20
 30
 40
 50
 60

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

A
vg

. r
el

at
iv

e
er

ro
r (

%
)

Time (MM:SS)

Node 13
Node 14

Node 15
Node 16

(a) k = 1, r = 200 (b) k = 2, r = 200 (c) k = 3, r = 200

Fig. 25. Dataset Tweets: convergence speed of DiSC on cluster nodesN1-N4 andN13-N16 (200Mdata instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.

Page 41 of 41 Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd

