
Teaching Parallel Programming with Active Learning 

Mohammad Amin Kuhail, Spencer Cook, Joshua W. Neustrom, Praveen Rao 
School of Computing and Engineering 

University of Missouri-Kansas City 

Kansas City, MO, US 

e-mail: {kuhailm, slcc2c, jwnf7b, raopr}@umkc.edu

 

 
Abstract—Today parallel computing is essential for 

the success of many real-world applications and software 

systems. Nonetheless, most computer science undergraduate 

courses teach students how to think and program sequentially. 

Further, software professionals have complained about the 

computer science curriculum’s lag behind industry in their 

failing to cover modern programming technologies such as 

parallel programming. The emphasis on parallel programming 

has become even more important due to the increasing 

adoption of horizontal scaling approaches to cope with massive 

datasets. In order to help students coming from a serial 

curriculum comprehend parallel concepts, we used an 

innovative approach that utilized active learning, 

visualizations, examples, discussions, and practical exercises. 

Further, we conducted an experiment to examine the effect of 

active learning on students’ understanding of parallel 

programming. Results indicate that the students that were 

actively engaged with the material performed better in terms 

of understanding parallel programming concepts than other 

students. 

Keywords: Parallel programming, teaching, OpenMP, data 

structures, visualizations, active learning. 

I.  INTRODUCTION 

Industry leaders have frequently complained about the 
inadequately equipped computer science graduates for 
solving world problems using emerging technologies. Daniel 
Gelernter [1] in the Wall Street Journal stated his intentions 
to no longer hire new graduates from computer science 
programs is due in part to the few classes in the curriculum 
related to what the company was looking for. 

An example of a relevant topic for modern software 
development is parallel programming, which involves 
executing code simultaneously with multiple processors. As 
computing speeds far exceed the requirements of many 
algorithms and the advent of multicore CPUs, parallel 
programming provides a method for improved utilization of 
hardware, thereby saving money through efficiency in power 
and space. Applications such as web servers, which handle 
high volumes of requests, further increase the demand for 
operations to happen in parallel with high reliability. 

Today companies are aggressively investing in 
technologies such as Apache Hadoop [2] and Apache Spark 
[3] for storing, processing, and analyzing massive amounts 
of data, or big data, to gain competitive advantage over 
others. Shared-nothing architectures have become the norm 
for horizontal scaling over massive datasets. Data are 
distributed across a shared-nothing cluster and the workload 

is parallelized on the partitioned data to gain significant 
speedup. Given the growing demand for skilled workforce in 
big data analytics, there is a pressing need to incorporate 
parallel programming concepts in an undergraduate 
computer science curriculum. 

Given the rising demand for parallel computing, many 
universities have been scrambling to fill the gap in computer 
science curriculum with new coursework. Cameron 
University worked towards increasing student interaction 
with industry experts by having students visit the University 
of Oklahoma Supercomputing Center and inviting parallel 
process professionals onto campus [4]. Universidad Nacional 
de Río Cuarto expanded their material from an elective 
course into a Data Structures II course using OpenMP [5]. 
Undergraduate students at Stanford University are being 
taught MapReduce [6] in a cloud environment [7]. These 
attempts and many others to integrate parallel programming 
into computer science undergraduate curriculum are very 
insightful, but there remains a need to explore different 
teaching methods and approaches to teaching parallel 
programming. 

At the University of Missouri-Kansas City (UMKC), the 
entry-level Data Structures course had an introduction to 
parallel programming along with a code demonstration of 
parallel Merge Sort. In order to help students transition from 
sequential to parallel algorithms, the course material 
interactivity was increased using algorithm visualizations, 
practical exercises, discussions, and test environments. 
Furthermore, we wanted to test the effect of active learning, 
a teaching method that involves students more directly in the 
learning process, on students’ understanding of parallelism.  
We split the students into two sections: One of the sections 
participated in increased active learning whereas the students 
of the other section did not benefit from active learning. We 
measured the results of our experiment by reviewing the 
results of quizzes and surveys. Results show that students 
engaged in active learning performed better in terms of 
understanding parallel programming concepts than others. 

II. BACKGROUND 

Several attempts have been made at various institutions to 

introduce parallel programming to undergraduate students. 

Some authors argue that it is important to engage the 

students with hands-on real-life examples [8]. Other authors 

emphasize that students need to be introduced to think 

parallel by showing them what can be parallelized and what 

cannot [9]. Some educators think it is important to teach 

college students parallelism early on [10]. Other educators 



advocate that parallelism needs to be introduced at the right 

level depending on the course [11]. It was also suggested that 

assigning projects and asking students to write research 

papers on their findings helps improve students’ learning 

[12]. Like our fellow educators, we wanted to make sure that 

we engage the students with hands-on tasks and introduce 

parallelism at the right level.   

Active learning has been suggested by educators to 

promote student participation and learning in the classroom 

[13]. A plethora of studies have shown the effectiveness of 

active learning in many fields. For example, an analysis of 

225 studies that compares conventional lectures to active 

learning in math, science, and engineering courses found that 

active learning improves student performance on course 

evaluation [14].  A promising form of active learning is 

collaborative learning groups where students are assigned in 

groups, and they are given tasks to work on together [15].  

Given the potential of active learning in the classroom, we 

also wanted to see its effect on students’ understanding of the 

materials. 

III. METHOD 

The objective was to teach parallel programming with 

great effectiveness using the following principles: First, we 

gradually switched from what is known to unknown. Second, 

we engaged the students by means of visualizations, role 

play, examples, discussions, and hands-on tasks. Third, to 

make our teaching practical and beneficial, we demonstrated 

all the examples using a development environment. Further, 

the source code was shared with the students. Fourth, in 

addition to using traditional teaching methods, we tested the 

effect of active learning in the form of collaborative learning 

groups on students’ understanding of the materials. 

Therefore, we split the students into two sections: The 

second section of students had collaborative learning groups, 

worked together on parallel programming tasks, and 

presented their solutions to the tasks to other students. The 

first section of students did not benefit from collaborative 

groups. Instead, the solutions to the tasks were presented to 

them in class. Apart from the active learning experiment, 

both sections were taught with the teaching methods and 

materials. We measured the results of our experiment by 

reviewing the results of quizzes and surveys.  

Initially we taught the parallel programming concepts in 

general, but we also used OpenMP to implement parallel 

programming, because it is widely adopted and well 

integrated with C++, a programming language that the 

students are familiar with. Further, OpenMP is relatively 

simple to use as it adds a layer of abstraction that hides 

complex details [16].  

The environment utilized was the Data Structures course 

at UMKC during the spring semester in 2017.  

The parallel-programming materials were taught in five 

lectures. Each lecture lasted 1 hour and 15 minutes. The total 

teaching time was 6 hours and a half.  

The materials of this study can be found at [17]. Table I 

shows the teaching activities the process follows. 

TABLE I.  TEACHING ACTIVITIES 

No. Activity 

1. Pre-Quiz. 

2. Introducing parallelism and the fork-join model. 

3. Basic parallel code example that shows multiple threads. 

4. Explaining parallelizing a for loop with OpenMP. 

5. Introducing race conditions, and giving examples on resolving 

race conditions with synchronization constructs such as atomic, 

critical, locks. 

6. Giving three tasks on writing parallel code with OpenMP parallel 

for. 

7. Introducing OpenMP sections with an example. 

8. Giving a task on OpenMP sections. 

9. Interacting with the students with a visualization of serial and 

parallel merge sort. 

10. Giving the students a task on writing code for parallel merge sort. 

11. Giving an advanced task on parallelism. 

12. Active Learning Experiment  

     Section 1: Teacher presenting solutions to selected parallelism 

task. 

     Section 2: Students presenting solutions to selected parallelism 

task to other students. 

13. Post-Quiz 

14. Survey 

 

     First, the students were given a quiz in order to obtain a 

benchmark of past effectiveness in teaching methods. The 

details of the quiz can be found at the evaluation section. 

After the quiz, preliminary course material on parallel 

programming was covered. The material covered a brief 

introduction to parallel programming. The students were also 

shown the running time difference between serial Merge Sort 

and a parallel Merge Sort that sorted a ten-million item 

unsorted array. The details of Merge Sort were not explained 

yet.  

Due to the time limitation, the coursework focused on 

the core topics of parallel programming. In particular, we 

focused on parallelizing serial for loops, creating multiple 

threads, race conditions, and creating sections. Using the 

OpenMP library, students were taught how to configure a 

C++-based OpenMP program in Visual Studio 2015. We 

demonstrated the code with a laptop, which has a multi-core 

Intel core i7 processor. 

A. Poor Parallel Programming 

In order to show the risk of poor parallel programming, 

students were given two algorithms that were supposed to 

count to ten million using a simple for loop (Algorithm I 

and Algorithm II). The students were also given a third 

algorithm (Algorithm III) that initialized an array to have 

multiples of two. The algorithms worked correctly in serial, 

but failed in parallel.  

(1) Algorithm I did not parallelize the loop correctly 

(Figure 1) since it created a team of threads that all 

ran the loop ten million times. x resulted in the 



expected value (ten million) since x is private for 

each thread: 

 
int MAX=10000000; 

#pragma omp parallel shared(MAX) 

 { 

  int x = 0; 

  for (int i = 0; i < MAX; i++) 

  { 

   x = x + 1; 

  } 

 

 } 

Figure 1.  Algorithm I. 

(2) We discussed that parallelizing a for loop in 

OpenMP can be simply done via the parallel for 

construct.  However, despite using parallel for, 

algorithm II did not parallelize the loop correctly 

(Figure 2). Algorithm II created a team of threads and 

divided the work amongst them to run the loop ten 

million times. Multiple loops were modifying the 

variable x at the same time. It was explained to the 

students that this situation is called a race condition. 

It was also explained that synchronization is needed 

when multiple threads are trying to update the same 

variable at the same time. We discussed several 

approaches to resolving race conditions with 

OpenMP such as the atomic and critical constructs as 

well as reduction and locks. Further, we discussed the 

pros and cons of the different approaches. Figure 3 

shows an example for resolving race conditions with 

reduction. 

 
int MAX=10000000; 

  #pragma omp parallel for shared(MAX) 

  for (int i = 0; i < MAX; ++i) 

   x++; 

 

Figure 2.  Algorithm II 

int MAX=10000000; 

  #pragma omp parallel for shared(MAX) 

reduction(+:x) 

  for (int i = 0; i < MAX; ++i) 

   x++; 

 

Figure 3.  Resolving race conditions for Algorithm II 

 

(3) Algorithm III is not possible to parallelize since the 

iterations are dependent on each other.  

int a[10];a[0]=2; 

for (int i = 1; i < 10; i++) 

  { 

    a[i] = 2 * a[i - 1]; 

  } 

Figure 4.  Algorithm III. 

B. OpenMP Sections 

We discussed with the students that despite the 

usefulness of parallel for to parallelize for loops, it has 

limitations. For instance, one cannot break out of a 

parallelized for loop. Further, serial recursive functions 

cannot be parallelized with parallel for. 

OpenMP sections provides a flexible solution to 

parallelizing serial algorithms. The sections construct 

assigns multiple threads to work on different blocks of code 

independently. To start with a simple example, we discussed 

how we can use OpenMP sections to allow two threads to 

search for an item in an unsorted array. Thread 1 works uses 

linear search to search the first half whereas thread 2 

searches the other half (Figures 5 and 6). To illustrate the 

example, we showed a visualization with MS PowerPoint to 

illustrate the example. 
 
void find_item(int low, int high, int target, 

vector<int>& vec, int& index){ 

  for (int i = low; i < high ; i++){ 

    if (index != -1) 

      break; 

   if (vec[i] == target){ 

     index = i; 

     break; 

   } 

 } 

} 

Figure 5.  Serial linear search for finding an item in an array. 

 
int find_item_sections(vector<int>& vec, int 

target){ 

 int index = -1; 

 #pragma omp parallel sections shared(index) 

 { 

 #pragma omp section /** thread 1**/ 

 find_item(0, vec.size()/ 2, target,vec, 

index); 

 

 #pragma omp section /** thread 2 **/ 

find_item(vec.size()/2,vec.size(),target,vec, 

index); 

 } 

return index; 

} 

Figure 6.  Algorithm IV: Using Sections to parallelize linear search 

C. Merge Sort Activity 

Serial merge sort had been taught to the students earlier 

in the semester. However, to refresh students’ memory, the 

algorithm was quickly explained by means of an animated 

visualization. The visualization showed students step by step 

how the algorithm sorts an array of integers by dividing, 

conquering, and merging partially sorted sub-arrays. 

After the visualization, each student was asked to use 

serial merge sort to sort the same array. The students were 

given index cards that represented integers in an array. The 



students placed the cards on their desks, and engaged in the 

activity. This role play activity only took a few minutes. 

Similar to serial merge sort, parallel merge sort with two 

threads was explained to the students using a visualization 

(Figure 7). After the illustration, each student was asked to 

team up with a neighboring student to work on parallel 

merge sort with two threads. Furthermore, we illustrated 

merge sort with four threads with a visualization. 

Afterwards, we asked every four students to team up to 

work on parallel merge sort. Many students reflected that 

adding more threads (classmates) to work on parallel merge 

sort resulted in faster processing time, but ultimately it 

would make a more substantial difference if the array was 

large. However, the speedup factor was explained earlier. 

The students were made aware that increasing the number of 

processers and threads does not always result in speeding up 

the performance 

D. Tasks 

We gave the students different kinds of tasks to engage 

them and reinforce the ideas that we presented to them. We 

checked on the students as they were working on the tasks. 

We present some examples of the tasks here:  

Task 1 (easy): Task 1 required the students to write 

parallel code that finds the minimum element in a vector. 

The students were given ten minutes to work on the task. 

Later, the students were presented with the solution, which 

was an application of parallel for and reduction. 

Task 2 (medium): The students were given serial code 

for merge sort, and were asked to parallelize it. They were 

first asked to use two threads, and then generalize it to 

accommodate any even number of threads. 

The students were given fifteen minutes to work on that 

task. We observed that most students successfully used 

OpenMP sections for the solution; one section for half the 

array, and another for the other half.  

A few students had trouble remembering the exact 

syntax. Some students had an idea about how to generalize 

the algorithm so that it can use any number of threads, but 

did not have the time to write the code. 

Task 3 (advanced):  Task 3 was about optimizing a 

given piece of code. The students were expected to write 

pseudo code on paper. The students were given serial code 

(Figure 7) that allocates eight queens on a chessboard so that 

they do not attack each other horizontally, vertically, or 

diagonally [18]. The allocations are stored in an array. To 

start with, each queen is placed in its own column (queen 0 

in column 0, queen 1 in column 1, etc.) to eliminate vertical 

attacks. The algorithm then generates all possible allocations. 

After generating an allocation, the algorithm checks if the 

solution is valid (when queens cannot attack each other).  

The algorithm had been explained to the students earlier 

in the semester. It is relatively challenging to parallelize this 

algorithm since there are dependencies. Each queen allocates 

the next queen. However, with a close look, the first queen 

(queen 0) does not depend on the allocation of a previous 

queen. Hence, the allocation of queen 0 can be parallelized.  

 
bool place_queen(int i) { 

if (i == 8) { 

 if (is_solution()) { 

  cout << "Solution # " << (++numsolutions)      

  << endl; 

  print_board(); 

  cout << endl; 

  return true; 

 } 

 else 

  return false; 

} 

for (int j = 0; j < 8; j++) { 

 row[i] = j; 

 place_queen(i + 1); 

} 

return false; 

} 

Figure 7 

Figure 8. A snapshot of visualizing parallel merge sort. 

 



IV. ACTIVE LEARNING EXPERIMENT 

We designed an experiment to measure the effect of active 

learning in the form of collaborative learning groups on 

students’ understanding of the materials. The students were 

split into two sections. We randomly chose the first section 

to be our control group and the second to be our treatment 

group. Other than the active learning experiment, both 

sections were taught with the same teaching methods and 

materials.  

We randomly split the students in the treatment group into 

four groups. Each group had five or six students. The groups 

worked on different parallelism problems. The problems 

were designed to allow students to explore different aspects 

of parallelizing serial algorithms. The students were also 

asked to help and teach each other while working on the 

problems. Further, the students were asked to present their 

solutions in front of other classmates. To make sure that 

every student was involved in the process, we told them that 

any student can be asked questions about the presentation.  

The students managed to solve the problems successfully 

with very few issues. The presentations included walking the 

audience through the solution, and answering questions from 

the audience.  

The tasks that the students worked on in the collaborative 

groups are as follows: 

Task 1: The following function uses backtracking to find 

a path to the exit in a maze. The maze is simply a two 

dimensional array that contains a number of rows and 

columns. A cell can be part of a path, a barrier, a dead end, 

or a background cell.  

Parallelize the findMazePath. For instance, imagine that 

you have multiple threads searching at the same time, but 

with different strategies (e.g. one strategy is to go 

up,down,left,right another is to go left,right,up,down, etc.). 

As soon as a thread finds the exist, other threads should stop. 
 

bool findMazePath(color grid[ROW_SIZE][COL_SIZE], 

int r, int c) { 

  if (r < 0 || c < 0 || r >= ROW_SIZE || c >= 

COL_SIZE) 

     return false;      // Cell is out of bounds. 

  else if (grid[r][c] != BACKGROUND)  

     return false; //Cell was visited or dead end. 

  else if(r == ROW_SIZE - 1 && c == COL_SIZE - 1){ 

    grid[r][c] = PATH;         // Cell is on path 

    return true;               

   } 

  else { 

   grid[r][c] = PATH; 

   if (findMazePath(grid, r - 1, c)|| 

findMazePath(grid, r + 1, c) || findMazePath(grid, 

r, c - 1)|| findMazePath(grid, r, c + 1)){ 

    return true; 

  else{ 

   grid[r][c] = TEMPORARY;  // Dead end. 

   return false; 

 }  

} 

} 

Figure 9, adapted from [19] 

Task 2: Parallelize the following algorithm which finds 

the prime numbers between 2 and a given max number.  

 
vector<int> calc_primes(const int max){ 

 vector<int> primes; 

 for (int i = 2; i < max; i++){ 

  primes.push_back(i); 

 } 

 for (int i = 0; i < primes.size(); i++){ 

  //get the value 

  int v = primes[i]; 

  if (v != 0) { 

  //remove all multiples of the value 

  for (int x = i + v; x < primes.size();x = x + v) 

{ 

   primes[x] = 0; 

  } 

 } 

} 

return primes; 

} 

Figure 10 

 

    Task 3: Write parallel code for the Odd-Even sorting 

algorithm. Test your solution with a randomly-generated 

array that has a 1,000,000 items. When you demonstrate 

your code, compare the time difference between a serial 

Odd-Even and parallel Odd-Even. 

Task 4: Write parallel code that merges two binary 

search trees. The idea is to convert each search tree into a 

sorted vector, and then merge the sorted vectors, and finally 

convert the sorted vector into a binary search tree.  Can you 

scale the code so that it merges four or eight trees? 

V. EVALUATION 

We used a quiz and a survey in order to evaluate the 

effectiveness of our teaching method and collect students’ 

opinions. 

A. Quiz Evaluation 

We gave students of Section 1 and Section 2 the same 

quiz on parallelism with OpenMP to measure the 

effectiveness of our teaching method, and to also see if 

active learning in section 2 made a difference on students’ 

understanding. The twenty-minute quiz was given at the 

beginning and end of teaching parallelism with OpenMP. To 

keep track of improvement, we asked students to write their 

names on both quizzes. However, the quiz did not have 

credit that counts towards the students’ grades. To make sure 

our results are reliable, we discarded papers coming from 

students who only took either the pre-quiz or post-quiz but 

not both.  

The quiz included multiple choice, short answers, and 

brief coding. The questions focused on the following: 

Quiz Questions: We asked several conceptual questions 

to test the students’ knowledge on core concepts of 

parallelism. Here are some examples of the questions: 

Question I (7 points): multiple-choice questions: the 

questions asked about advantages and disadvantages of 



parallel programming in relation to traditional serial 

methods, and in what situations would parallel code work 

best/worst. 

• Question II (2 points):  What is parallel 
programming? What are some programming APIs 
developers can use to write parallel code? 

• Question III (2 points): Would it be better to use 
parallel programming within Insertion Sort or Merge 
Sort? Explain. 

• Question IV (3 points): Write parallel code to 
calculate the average of a vector of integers. The 
question tests for the students’ knowledge of 
synchronization. 

• Question V (3 points): Write parallel code to search 
for a value in a binary tree. 

• Question VI (3 points): Parallelize the given serial 
code for the quick sort algorithm. 

• Question VII (3 points): What is a race condition? 
Mention an example. What’s the solution? Coding 
Questions:  

B. Survey Questions 

To get the students’ opinions on our teaching method, we 

conducted a survey at the end of the teaching activity. The 

survey contained quantitative and qualitative questions. 

Quantitative Questions: We asked the students to rate 

various aspects of our teaching method on a scale from one 

to ten. The questions were as follows: 

• Q I: How would you rate the section of the course on 
parallel programming?   

• Q II: How useful was the material (slides and code)? 

• Q III: How enjoyable were the activities (tasks and 
merge sort activity)? 

• Q IV: How much did you learn from the merge sort 
and coding activities? 

• Qualitative Questions: We asked the student two 
open-ended questions to get their feedback in more 
detail. 

• Q V: What did you like about the section of the 
course on parallel processing? 

• Q VI: What did you not like about the section of the 
course on parallel processing? 

• Q VII: Do you have suggestions for improvement? 

VI. EVALUATION RESULTS 

Table I shows the number of students who participated in 
the evaluation. The study was conducted in the spring 
semester in 2017. We discarded participation from students 
who only took either the pre-quiz or post-quiz but not both.  

TABLE II.  STUDENT PARTICIPATION IN EVALUATION 

Section Number Of Students 

1 (control) 15  

2 (treatment) 21 

 

Figure 11 shows a box plot showing the results of the 
quiz before and after the teaching activity in Section 1 and 

Section 2. Tables III, IV, V, and VI show the details of the 
results.  The quiz was out of 23 points. The tables show how 
students scored in the individual questions as well as the total 
quiz score. The results show only know very little about how 
to write parallel code prior to the teaching activity. Overall, 
our interactive teaching method points to a significant 
improvement in all areas.  

 
Figure 11: Box Plot of Quiz Results  

TABLE III.  PRE-QUIZ RESULTS FOR SECTION 1 

Questions Mean STD Max Min 

Q I (out of 7) 2.8 1.42 6 0 

QII (out of 2) 0.53 0.83 2 0 

QIII (out of 2) 0.47 0.74 2 0 

QIV (out of 3) 0.17 0.65 2.5 0 

QV (out of 3) 0.13 0.52 2 0 

QVI (out of 3) 0.1 0.39 1.5 0 

QVII (out of 3) 0.4 1.06 3 0 

Total (out of 23) 4.6  4.34 16  0 

TABLE IV.  PRE-QUIZ RESULTS FOR SECTION 2 

Questions Mean STD Max Min 

Q I (out of 7) 3.71 1.31 7 1.31 

QII (out of 2) 1.14 0.79 2 0 

QIII (out of 2) 0.76 0.89 2 0 

QIV (out of 3) 0 0 0 0 

QV (out of 3) 0 0 0 0 

QVI (out of 3) 0 0 0 0 

QVII (out of 3) 0.24 0.77 3 0 

Total (out of 23) 5.86  2.39 11 2 

A. Student Learning Improvement 

Table VII shows how students in section 1 and 2 
improved. On average, students of section 1 improved 6.87 
points out of 23 points (29.87%) whereas students of section 
2 improved 11.55 points out of 23 points (50.27%). 

A few students reported that if they had more time 

working on the post-quiz, they would have given better 

answers to some questions, especially the coding questions. 



TABLE V.  POST-QUIZ RESULTS FOR SECTION 1 

Questions Mean STD Max Min 

Q I (out of 7) 3.93 1.22 6 1 

QII (out of 2) 1.47 0.92 2 0 

QIII (out of 2) 1.37 0.89 2 0 

QIV (out of 3) 1.27 1.22 3 0 

QV (out of 3) 0.4 0.91 3 0 

QVI (out of 3) 1.5 1.27 3 0 

QVII (out of 3) 1.53 1.51 3 0 

Total (out of 23) 11.47  6.02 22  1 

TABLE VI.  POST-QUIZ RESULTS FOR SECTION 2 

Questions Mean STD Max Min 

Q I (out of 7) 5.24 1.04 7 1.04 

QII (out of 2) 1.86 0.36 2 0.36 

QIII (out of 2) 1.81 0.51 2 0 

QIV (out of 3) 2.24 1.04 3 0 

QV (out of 3) 1.4 1.39 3 0 

QVI (out of 3) 2.19 1.249 3 0 

QVII (out of 3) 2.59 1.02 3 0 

Total (out of 23) 17.40  4.11 22  9 

 

TABLE VII.  IMPROVEMENT COMPARISON 

 Section 1 Section 2 

Improvement Mean 6.87 points 11.55 points 

Improvement STD 4.76 points 3.86 points 

 

To show that the improvement was meaningful from 

before to after the quiz, we ran a pairwise t-test on the before 

and after quiz data for each section of the class. The 

improvements in section 1 and 2 had kurtosis/skew of -

1.77/.09 and -0.40/-0.50 respectively. This is well within the 

range to indicate that both improvements are normally 

distributed and the tests will be meaningful.   

We conducted the experiment to test two hypotheses. 

Our first hypothesis is: students’ mean score in both 

sections after the quiz is higher than the students’ mean 

score before the quiz in both sections. In other words, our 

teaching method improves students’ understanding of 

parallel programming in both sections. The second 

hypothesis is: Active learning improves understanding of 

parallel programming. In other words, the mean score of 

students who benefited from active learning (section 2 

students) after the quiz is higher than the mean score of 

students in section 1 after the quiz. 

The null hypothesis can be defined as: our teaching 

method has no effect on students’ score, which means the 

mean score of students in both sections before the quiz is 

equal to the mean score in both sections after the quiz, 

. Our results show that in section 1, 

p=6.75*10-5, and in section 2, p=3.38*10-8. Thus at  

in both cases, the null hypothesis must be rejected.  Another 

null hypothesis can be defined as: students’ mean score 

before the quiz is higher than the students’ score after the 

quiz in both sections, . This hypothesis 

is also rejected for each with p=3.38*10-5, 1.69*10-8 

respectively.  Rejecting both null hypotheses indicates that 

the alternative hypothesis, our teaching method of parallel 

programming improves understanding,  

, is more likely.  

We also wanted to test our second hypothesis, active 

learning improves students’ understanding of parallel 

programming. The null hypothesis can be defined as: 

students’ mean score in both sections after the quiz is 

similar, . The null hypothesis is 

rejected with p=0.004. Additionally, the null hypothesis that 

the mean score in section 1 is higher than the mean score in 

section 2 after the quiz, is rejected 

with p=0.002. Hence, it cannot be accepted that section 1 

improved the same or more than section 2. Therefore, our 

second hypothesis, active learning improves understanding 

of parallel programming , is more 

likely. 

B. Survey Results 

The quantitative survey results (Table VII) show 

positive feedback from the students on our interactive 

teaching activity. The mean score for each question in both 

sections was great than 6, indicating the students felt it was 

a beneficial experience, confirming the results seen from 

their quiz scores. On the qualitative questions, many 

students commented positively on our teaching activities. In 

particular, some students appreciated the informative and 

clear notes, tasks and visualizations. Other students found it 

useful that they were showed how to parallelize serial 

algorithms. On the other hand, a common theme emerged in 

student’s negative feedback. Students commented on the 

short amount of time to cover such an important subject. 

Further, students requested additional time and activities on 

parallel programming. Some students wanted the topics to 

be explored more deeply. Some students wanted more 

guidance on how to run parallel code with Visual Studio. 

TABLE VIII.  QUANTITATIVE QUIZ RESULTS FOR SECTION 1 

Questions Mean STD Max Min 

Q I (out of 10) 7.88  1.22 10 5 

QII (out of 10) 8,18 1.42 10  4 

QIII (out of 10) 7.71 1.96 10  3 

QIV(out of 10) 7.56 1.70 10  4 

 



TABLE IX.  QUANTITATIVE QUIZ RESULTS FOR SECTION 2 

Questions Mean STD Max Min 

Q I (out of 10) 6.70  2.05 10 1 

QII (out of 10) 7.30 2.30 10  4 

QIII (out of 10) 6.61 1.96 10  1 

QIV(out of 10) 6.52 2.74 10  4 

 

VII. DISCUSSION AND CONCLUSION 

In this paper, we presented an innovative approach to 

teaching parallel programming to undergraduate students. 

Our approach combined several ingredients to improve the 

effectiveness of learning. We engaged the students with 

visualizations, role play, and practical exercises. Moreover, 

we provided the students with informative notes and source 

code. We also tested the effect of active learning on 

students’ understanding of parallel programming.  Our 

evaluation shows a significant improvement in 

understanding theoretical and practical PDC topics. Further, 

the active learning approach seems to give students an 

advantage in terms of allowing them to engage in the 

material and learn it more effectively.   To complement our 

efforts, we allowed the students to practice PDC topics 

further by asking them to use parallelism in their course 

projects. Overall the result was positive with a majority of 

students successfully implementing parallel techniques into 

their own code.  

Despite the promising results, we believe there is still 

room for improvement. We believe more time needs to be 

given to covering PDC topics in more depth, and allowing 

the students to practice more exercises. For instance, it 

would be very helpful to have the students practice more 

exercises in the lab, and see the speedup factor. In our 

teaching activity, we used Intel Core i7 processor to 

illustrate the usage of parallelism. However, we believe 

allowing the students to work on clusters to process large 

sets of data would be more practical.  

Long term, a full parallel programming course is 

anticipated to grow students into practical preparation for 

the real world. 
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