
Teaching Parallel Programming with Active Learning

Mohammad Amin Kuhail, Spencer Cook, Joshua W. Neustrom, Praveen Rao
School of Computing and Engineering

University of Missouri-Kansas City

Kansas City, MO, US

e-mail: {kuhailm, slcc2c, jwnf7b, raopr}@umkc.edu

Abstract—Today parallel computing is essential for

the success of many real-world applications and software

systems. Nonetheless, most computer science undergraduate

courses teach students how to think and program sequentially.

Further, software professionals have complained about the

computer science curriculum’s lag behind industry in their

failing to cover modern programming technologies such as

parallel programming. The emphasis on parallel programming

has become even more important due to the increasing

adoption of horizontal scaling approaches to cope with massive

datasets. In order to help students coming from a serial

curriculum comprehend parallel concepts, we used an

innovative approach that utilized active learning,

visualizations, examples, discussions, and practical exercises.

Further, we conducted an experiment to examine the effect of

active learning on students’ understanding of parallel

programming. Results indicate that the students that were

actively engaged with the material performed better in terms

of understanding parallel programming concepts than other

students.

Keywords: Parallel programming, teaching, OpenMP, data

structures, visualizations, active learning.

I. INTRODUCTION

Industry leaders have frequently complained about the
inadequately equipped computer science graduates for
solving world problems using emerging technologies. Daniel
Gelernter [1] in the Wall Street Journal stated his intentions
to no longer hire new graduates from computer science
programs is due in part to the few classes in the curriculum
related to what the company was looking for.

An example of a relevant topic for modern software
development is parallel programming, which involves
executing code simultaneously with multiple processors. As
computing speeds far exceed the requirements of many
algorithms and the advent of multicore CPUs, parallel
programming provides a method for improved utilization of
hardware, thereby saving money through efficiency in power
and space. Applications such as web servers, which handle
high volumes of requests, further increase the demand for
operations to happen in parallel with high reliability.

Today companies are aggressively investing in
technologies such as Apache Hadoop [2] and Apache Spark
[3] for storing, processing, and analyzing massive amounts
of data, or big data, to gain competitive advantage over
others. Shared-nothing architectures have become the norm
for horizontal scaling over massive datasets. Data are
distributed across a shared-nothing cluster and the workload

is parallelized on the partitioned data to gain significant
speedup. Given the growing demand for skilled workforce in
big data analytics, there is a pressing need to incorporate
parallel programming concepts in an undergraduate
computer science curriculum.

Given the rising demand for parallel computing, many
universities have been scrambling to fill the gap in computer
science curriculum with new coursework. Cameron
University worked towards increasing student interaction
with industry experts by having students visit the University
of Oklahoma Supercomputing Center and inviting parallel
process professionals onto campus [4]. Universidad Nacional
de Río Cuarto expanded their material from an elective
course into a Data Structures II course using OpenMP [5].
Undergraduate students at Stanford University are being
taught MapReduce [6] in a cloud environment [7]. These
attempts and many others to integrate parallel programming
into computer science undergraduate curriculum are very
insightful, but there remains a need to explore different
teaching methods and approaches to teaching parallel
programming.

At the University of Missouri-Kansas City (UMKC), the
entry-level Data Structures course had an introduction to
parallel programming along with a code demonstration of
parallel Merge Sort. In order to help students transition from
sequential to parallel algorithms, the course material
interactivity was increased using algorithm visualizations,
practical exercises, discussions, and test environments.
Furthermore, we wanted to test the effect of active learning,
a teaching method that involves students more directly in the
learning process, on students’ understanding of parallelism.
We split the students into two sections: One of the sections
participated in increased active learning whereas the students
of the other section did not benefit from active learning. We
measured the results of our experiment by reviewing the
results of quizzes and surveys. Results show that students
engaged in active learning performed better in terms of
understanding parallel programming concepts than others.

II. BACKGROUND

Several attempts have been made at various institutions to

introduce parallel programming to undergraduate students.

Some authors argue that it is important to engage the

students with hands-on real-life examples [8]. Other authors

emphasize that students need to be introduced to think

parallel by showing them what can be parallelized and what

cannot [9]. Some educators think it is important to teach

college students parallelism early on [10]. Other educators

advocate that parallelism needs to be introduced at the right

level depending on the course [11]. It was also suggested that

assigning projects and asking students to write research

papers on their findings helps improve students’ learning

[12]. Like our fellow educators, we wanted to make sure that

we engage the students with hands-on tasks and introduce

parallelism at the right level.

Active learning has been suggested by educators to

promote student participation and learning in the classroom

[13]. A plethora of studies have shown the effectiveness of

active learning in many fields. For example, an analysis of

225 studies that compares conventional lectures to active

learning in math, science, and engineering courses found that

active learning improves student performance on course

evaluation [14]. A promising form of active learning is

collaborative learning groups where students are assigned in

groups, and they are given tasks to work on together [15].

Given the potential of active learning in the classroom, we

also wanted to see its effect on students’ understanding of the

materials.

III. METHOD

The objective was to teach parallel programming with

great effectiveness using the following principles: First, we

gradually switched from what is known to unknown. Second,

we engaged the students by means of visualizations, role

play, examples, discussions, and hands-on tasks. Third, to

make our teaching practical and beneficial, we demonstrated

all the examples using a development environment. Further,

the source code was shared with the students. Fourth, in

addition to using traditional teaching methods, we tested the

effect of active learning in the form of collaborative learning

groups on students’ understanding of the materials.

Therefore, we split the students into two sections: The

second section of students had collaborative learning groups,

worked together on parallel programming tasks, and

presented their solutions to the tasks to other students. The

first section of students did not benefit from collaborative

groups. Instead, the solutions to the tasks were presented to

them in class. Apart from the active learning experiment,

both sections were taught with the teaching methods and

materials. We measured the results of our experiment by

reviewing the results of quizzes and surveys.

Initially we taught the parallel programming concepts in

general, but we also used OpenMP to implement parallel

programming, because it is widely adopted and well

integrated with C++, a programming language that the

students are familiar with. Further, OpenMP is relatively

simple to use as it adds a layer of abstraction that hides

complex details [16].

The environment utilized was the Data Structures course

at UMKC during the spring semester in 2017.

The parallel-programming materials were taught in five

lectures. Each lecture lasted 1 hour and 15 minutes. The total

teaching time was 6 hours and a half.

The materials of this study can be found at [17]. Table I

shows the teaching activities the process follows.

TABLE I. TEACHING ACTIVITIES

No. Activity

1. Pre-Quiz.

2. Introducing parallelism and the fork-join model.

3. Basic parallel code example that shows multiple threads.

4. Explaining parallelizing a for loop with OpenMP.

5. Introducing race conditions, and giving examples on resolving

race conditions with synchronization constructs such as atomic,

critical, locks.

6. Giving three tasks on writing parallel code with OpenMP parallel

for.

7. Introducing OpenMP sections with an example.

8. Giving a task on OpenMP sections.

9. Interacting with the students with a visualization of serial and

parallel merge sort.

10. Giving the students a task on writing code for parallel merge sort.

11. Giving an advanced task on parallelism.

12. Active Learning Experiment

 Section 1: Teacher presenting solutions to selected parallelism

task.

 Section 2: Students presenting solutions to selected parallelism

task to other students.

13. Post-Quiz

14. Survey

 First, the students were given a quiz in order to obtain a

benchmark of past effectiveness in teaching methods. The

details of the quiz can be found at the evaluation section.

After the quiz, preliminary course material on parallel

programming was covered. The material covered a brief

introduction to parallel programming. The students were also

shown the running time difference between serial Merge Sort

and a parallel Merge Sort that sorted a ten-million item

unsorted array. The details of Merge Sort were not explained

yet.

Due to the time limitation, the coursework focused on

the core topics of parallel programming. In particular, we

focused on parallelizing serial for loops, creating multiple

threads, race conditions, and creating sections. Using the

OpenMP library, students were taught how to configure a

C++-based OpenMP program in Visual Studio 2015. We

demonstrated the code with a laptop, which has a multi-core

Intel core i7 processor.

A. Poor Parallel Programming

In order to show the risk of poor parallel programming,

students were given two algorithms that were supposed to

count to ten million using a simple for loop (Algorithm I

and Algorithm II). The students were also given a third

algorithm (Algorithm III) that initialized an array to have

multiples of two. The algorithms worked correctly in serial,

but failed in parallel.

(1) Algorithm I did not parallelize the loop correctly

(Figure 1) since it created a team of threads that all

ran the loop ten million times. x resulted in the

expected value (ten million) since x is private for

each thread:

int MAX=10000000;

#pragma omp parallel shared(MAX)

 {

 int x = 0;

 for (int i = 0; i < MAX; i++)

 {

 x = x + 1;

 }

 }

Figure 1. Algorithm I.

(2) We discussed that parallelizing a for loop in

OpenMP can be simply done via the parallel for

construct. However, despite using parallel for,

algorithm II did not parallelize the loop correctly

(Figure 2). Algorithm II created a team of threads and

divided the work amongst them to run the loop ten

million times. Multiple loops were modifying the

variable x at the same time. It was explained to the

students that this situation is called a race condition.

It was also explained that synchronization is needed

when multiple threads are trying to update the same

variable at the same time. We discussed several

approaches to resolving race conditions with

OpenMP such as the atomic and critical constructs as

well as reduction and locks. Further, we discussed the

pros and cons of the different approaches. Figure 3

shows an example for resolving race conditions with

reduction.

int MAX=10000000;

 #pragma omp parallel for shared(MAX)

 for (int i = 0; i < MAX; ++i)

 x++;

Figure 2. Algorithm II

int MAX=10000000;

 #pragma omp parallel for shared(MAX)

reduction(+:x)

 for (int i = 0; i < MAX; ++i)

 x++;

Figure 3. Resolving race conditions for Algorithm II

(3) Algorithm III is not possible to parallelize since the

iterations are dependent on each other.

int a[10];a[0]=2;

for (int i = 1; i < 10; i++)

 {

 a[i] = 2 * a[i - 1];

 }

Figure 4. Algorithm III.

B. OpenMP Sections

We discussed with the students that despite the

usefulness of parallel for to parallelize for loops, it has

limitations. For instance, one cannot break out of a

parallelized for loop. Further, serial recursive functions

cannot be parallelized with parallel for.

OpenMP sections provides a flexible solution to

parallelizing serial algorithms. The sections construct

assigns multiple threads to work on different blocks of code

independently. To start with a simple example, we discussed

how we can use OpenMP sections to allow two threads to

search for an item in an unsorted array. Thread 1 works uses

linear search to search the first half whereas thread 2

searches the other half (Figures 5 and 6). To illustrate the

example, we showed a visualization with MS PowerPoint to

illustrate the example.

void find_item(int low, int high, int target,

vector<int>& vec, int& index){

 for (int i = low; i < high ; i++){

 if (index != -1)

 break;

 if (vec[i] == target){

 index = i;

 break;

 }

 }

}

Figure 5. Serial linear search for finding an item in an array.

int find_item_sections(vector<int>& vec, int

target){

 int index = -1;

 #pragma omp parallel sections shared(index)

 {

 #pragma omp section /** thread 1**/

 find_item(0, vec.size()/ 2, target,vec,

index);

 #pragma omp section /** thread 2 **/

find_item(vec.size()/2,vec.size(),target,vec,

index);

 }

return index;

}

Figure 6. Algorithm IV: Using Sections to parallelize linear search

C. Merge Sort Activity

Serial merge sort had been taught to the students earlier

in the semester. However, to refresh students’ memory, the

algorithm was quickly explained by means of an animated

visualization. The visualization showed students step by step

how the algorithm sorts an array of integers by dividing,

conquering, and merging partially sorted sub-arrays.

After the visualization, each student was asked to use

serial merge sort to sort the same array. The students were

given index cards that represented integers in an array. The

students placed the cards on their desks, and engaged in the

activity. This role play activity only took a few minutes.

Similar to serial merge sort, parallel merge sort with two

threads was explained to the students using a visualization

(Figure 7). After the illustration, each student was asked to

team up with a neighboring student to work on parallel

merge sort with two threads. Furthermore, we illustrated

merge sort with four threads with a visualization.

Afterwards, we asked every four students to team up to

work on parallel merge sort. Many students reflected that

adding more threads (classmates) to work on parallel merge

sort resulted in faster processing time, but ultimately it

would make a more substantial difference if the array was

large. However, the speedup factor was explained earlier.

The students were made aware that increasing the number of

processers and threads does not always result in speeding up

the performance

D. Tasks

We gave the students different kinds of tasks to engage

them and reinforce the ideas that we presented to them. We

checked on the students as they were working on the tasks.

We present some examples of the tasks here:

Task 1 (easy): Task 1 required the students to write

parallel code that finds the minimum element in a vector.

The students were given ten minutes to work on the task.

Later, the students were presented with the solution, which

was an application of parallel for and reduction.

Task 2 (medium): The students were given serial code

for merge sort, and were asked to parallelize it. They were

first asked to use two threads, and then generalize it to

accommodate any even number of threads.

The students were given fifteen minutes to work on that

task. We observed that most students successfully used

OpenMP sections for the solution; one section for half the

array, and another for the other half.

A few students had trouble remembering the exact

syntax. Some students had an idea about how to generalize

the algorithm so that it can use any number of threads, but

did not have the time to write the code.

Task 3 (advanced): Task 3 was about optimizing a

given piece of code. The students were expected to write

pseudo code on paper. The students were given serial code

(Figure 7) that allocates eight queens on a chessboard so that

they do not attack each other horizontally, vertically, or

diagonally [18]. The allocations are stored in an array. To

start with, each queen is placed in its own column (queen 0

in column 0, queen 1 in column 1, etc.) to eliminate vertical

attacks. The algorithm then generates all possible allocations.

After generating an allocation, the algorithm checks if the

solution is valid (when queens cannot attack each other).

The algorithm had been explained to the students earlier

in the semester. It is relatively challenging to parallelize this

algorithm since there are dependencies. Each queen allocates

the next queen. However, with a close look, the first queen

(queen 0) does not depend on the allocation of a previous

queen. Hence, the allocation of queen 0 can be parallelized.

bool place_queen(int i) {

if (i == 8) {

 if (is_solution()) {

 cout << "Solution # " << (++numsolutions)

 << endl;

 print_board();

 cout << endl;

 return true;

 }

 else

 return false;

}

for (int j = 0; j < 8; j++) {

 row[i] = j;

 place_queen(i + 1);

}

return false;

}

Figure 7

Figure 8. A snapshot of visualizing parallel merge sort.

IV. ACTIVE LEARNING EXPERIMENT

We designed an experiment to measure the effect of active

learning in the form of collaborative learning groups on

students’ understanding of the materials. The students were

split into two sections. We randomly chose the first section

to be our control group and the second to be our treatment

group. Other than the active learning experiment, both

sections were taught with the same teaching methods and

materials.

We randomly split the students in the treatment group into

four groups. Each group had five or six students. The groups

worked on different parallelism problems. The problems

were designed to allow students to explore different aspects

of parallelizing serial algorithms. The students were also

asked to help and teach each other while working on the

problems. Further, the students were asked to present their

solutions in front of other classmates. To make sure that

every student was involved in the process, we told them that

any student can be asked questions about the presentation.

The students managed to solve the problems successfully

with very few issues. The presentations included walking the

audience through the solution, and answering questions from

the audience.

The tasks that the students worked on in the collaborative

groups are as follows:

Task 1: The following function uses backtracking to find

a path to the exit in a maze. The maze is simply a two

dimensional array that contains a number of rows and

columns. A cell can be part of a path, a barrier, a dead end,

or a background cell.

Parallelize the findMazePath. For instance, imagine that

you have multiple threads searching at the same time, but

with different strategies (e.g. one strategy is to go

up,down,left,right another is to go left,right,up,down, etc.).

As soon as a thread finds the exist, other threads should stop.

bool findMazePath(color grid[ROW_SIZE][COL_SIZE],

int r, int c) {

 if (r < 0 || c < 0 || r >= ROW_SIZE || c >=

COL_SIZE)

 return false; // Cell is out of bounds.

 else if (grid[r][c] != BACKGROUND)

 return false; //Cell was visited or dead end.

 else if(r == ROW_SIZE - 1 && c == COL_SIZE - 1){

 grid[r][c] = PATH; // Cell is on path

 return true;

 }

 else {

 grid[r][c] = PATH;

 if (findMazePath(grid, r - 1, c)||

findMazePath(grid, r + 1, c) || findMazePath(grid,

r, c - 1)|| findMazePath(grid, r, c + 1)){

 return true;

 else{

 grid[r][c] = TEMPORARY; // Dead end.

 return false;

 }

}

}

Figure 9, adapted from [19]

Task 2: Parallelize the following algorithm which finds

the prime numbers between 2 and a given max number.

vector<int> calc_primes(const int max){

 vector<int> primes;

 for (int i = 2; i < max; i++){

 primes.push_back(i);

 }

 for (int i = 0; i < primes.size(); i++){

 //get the value

 int v = primes[i];

 if (v != 0) {

 //remove all multiples of the value

 for (int x = i + v; x < primes.size();x = x + v)

{

 primes[x] = 0;

 }

 }

}

return primes;

}

Figure 10

 Task 3: Write parallel code for the Odd-Even sorting

algorithm. Test your solution with a randomly-generated

array that has a 1,000,000 items. When you demonstrate

your code, compare the time difference between a serial

Odd-Even and parallel Odd-Even.

Task 4: Write parallel code that merges two binary

search trees. The idea is to convert each search tree into a

sorted vector, and then merge the sorted vectors, and finally

convert the sorted vector into a binary search tree. Can you

scale the code so that it merges four or eight trees?

V. EVALUATION

We used a quiz and a survey in order to evaluate the

effectiveness of our teaching method and collect students’

opinions.

A. Quiz Evaluation

We gave students of Section 1 and Section 2 the same

quiz on parallelism with OpenMP to measure the

effectiveness of our teaching method, and to also see if

active learning in section 2 made a difference on students’

understanding. The twenty-minute quiz was given at the

beginning and end of teaching parallelism with OpenMP. To

keep track of improvement, we asked students to write their

names on both quizzes. However, the quiz did not have

credit that counts towards the students’ grades. To make sure

our results are reliable, we discarded papers coming from

students who only took either the pre-quiz or post-quiz but

not both.

The quiz included multiple choice, short answers, and

brief coding. The questions focused on the following:

Quiz Questions: We asked several conceptual questions

to test the students’ knowledge on core concepts of

parallelism. Here are some examples of the questions:

Question I (7 points): multiple-choice questions: the

questions asked about advantages and disadvantages of

parallel programming in relation to traditional serial

methods, and in what situations would parallel code work

best/worst.

• Question II (2 points): What is parallel
programming? What are some programming APIs
developers can use to write parallel code?

• Question III (2 points): Would it be better to use
parallel programming within Insertion Sort or Merge
Sort? Explain.

• Question IV (3 points): Write parallel code to
calculate the average of a vector of integers. The
question tests for the students’ knowledge of
synchronization.

• Question V (3 points): Write parallel code to search
for a value in a binary tree.

• Question VI (3 points): Parallelize the given serial
code for the quick sort algorithm.

• Question VII (3 points): What is a race condition?
Mention an example. What’s the solution? Coding
Questions:

B. Survey Questions

To get the students’ opinions on our teaching method, we

conducted a survey at the end of the teaching activity. The

survey contained quantitative and qualitative questions.

Quantitative Questions: We asked the students to rate

various aspects of our teaching method on a scale from one

to ten. The questions were as follows:

• Q I: How would you rate the section of the course on
parallel programming?

• Q II: How useful was the material (slides and code)?

• Q III: How enjoyable were the activities (tasks and
merge sort activity)?

• Q IV: How much did you learn from the merge sort
and coding activities?

• Qualitative Questions: We asked the student two
open-ended questions to get their feedback in more
detail.

• Q V: What did you like about the section of the
course on parallel processing?

• Q VI: What did you not like about the section of the
course on parallel processing?

• Q VII: Do you have suggestions for improvement?

VI. EVALUATION RESULTS

Table I shows the number of students who participated in
the evaluation. The study was conducted in the spring
semester in 2017. We discarded participation from students
who only took either the pre-quiz or post-quiz but not both.

TABLE II. STUDENT PARTICIPATION IN EVALUATION

Section Number Of Students

1 (control) 15

2 (treatment) 21

Figure 11 shows a box plot showing the results of the
quiz before and after the teaching activity in Section 1 and

Section 2. Tables III, IV, V, and VI show the details of the
results. The quiz was out of 23 points. The tables show how
students scored in the individual questions as well as the total
quiz score. The results show only know very little about how
to write parallel code prior to the teaching activity. Overall,
our interactive teaching method points to a significant
improvement in all areas.

Figure 11: Box Plot of Quiz Results

TABLE III. PRE-QUIZ RESULTS FOR SECTION 1

Questions Mean STD Max Min

Q I (out of 7) 2.8 1.42 6 0

QII (out of 2) 0.53 0.83 2 0

QIII (out of 2) 0.47 0.74 2 0

QIV (out of 3) 0.17 0.65 2.5 0

QV (out of 3) 0.13 0.52 2 0

QVI (out of 3) 0.1 0.39 1.5 0

QVII (out of 3) 0.4 1.06 3 0

Total (out of 23) 4.6 4.34 16 0

TABLE IV. PRE-QUIZ RESULTS FOR SECTION 2

Questions Mean STD Max Min

Q I (out of 7) 3.71 1.31 7 1.31

QII (out of 2) 1.14 0.79 2 0

QIII (out of 2) 0.76 0.89 2 0

QIV (out of 3) 0 0 0 0

QV (out of 3) 0 0 0 0

QVI (out of 3) 0 0 0 0

QVII (out of 3) 0.24 0.77 3 0

Total (out of 23) 5.86 2.39 11 2

A. Student Learning Improvement

Table VII shows how students in section 1 and 2
improved. On average, students of section 1 improved 6.87
points out of 23 points (29.87%) whereas students of section
2 improved 11.55 points out of 23 points (50.27%).

A few students reported that if they had more time

working on the post-quiz, they would have given better

answers to some questions, especially the coding questions.

TABLE V. POST-QUIZ RESULTS FOR SECTION 1

Questions Mean STD Max Min

Q I (out of 7) 3.93 1.22 6 1

QII (out of 2) 1.47 0.92 2 0

QIII (out of 2) 1.37 0.89 2 0

QIV (out of 3) 1.27 1.22 3 0

QV (out of 3) 0.4 0.91 3 0

QVI (out of 3) 1.5 1.27 3 0

QVII (out of 3) 1.53 1.51 3 0

Total (out of 23) 11.47 6.02 22 1

TABLE VI. POST-QUIZ RESULTS FOR SECTION 2

Questions Mean STD Max Min

Q I (out of 7) 5.24 1.04 7 1.04

QII (out of 2) 1.86 0.36 2 0.36

QIII (out of 2) 1.81 0.51 2 0

QIV (out of 3) 2.24 1.04 3 0

QV (out of 3) 1.4 1.39 3 0

QVI (out of 3) 2.19 1.249 3 0

QVII (out of 3) 2.59 1.02 3 0

Total (out of 23) 17.40 4.11 22 9

TABLE VII. IMPROVEMENT COMPARISON

 Section 1 Section 2

Improvement Mean 6.87 points 11.55 points

Improvement STD 4.76 points 3.86 points

To show that the improvement was meaningful from

before to after the quiz, we ran a pairwise t-test on the before

and after quiz data for each section of the class. The

improvements in section 1 and 2 had kurtosis/skew of -

1.77/.09 and -0.40/-0.50 respectively. This is well within the

range to indicate that both improvements are normally

distributed and the tests will be meaningful.

We conducted the experiment to test two hypotheses.

Our first hypothesis is: students’ mean score in both

sections after the quiz is higher than the students’ mean

score before the quiz in both sections. In other words, our

teaching method improves students’ understanding of

parallel programming in both sections. The second

hypothesis is: Active learning improves understanding of

parallel programming. In other words, the mean score of

students who benefited from active learning (section 2

students) after the quiz is higher than the mean score of

students in section 1 after the quiz.

The null hypothesis can be defined as: our teaching

method has no effect on students’ score, which means the

mean score of students in both sections before the quiz is

equal to the mean score in both sections after the quiz,

. Our results show that in section 1,

p=6.75*10-5, and in section 2, p=3.38*10-8. Thus at

in both cases, the null hypothesis must be rejected. Another

null hypothesis can be defined as: students’ mean score

before the quiz is higher than the students’ score after the

quiz in both sections, . This hypothesis

is also rejected for each with p=3.38*10-5, 1.69*10-8

respectively. Rejecting both null hypotheses indicates that

the alternative hypothesis, our teaching method of parallel

programming improves understanding,

, is more likely.

We also wanted to test our second hypothesis, active

learning improves students’ understanding of parallel

programming. The null hypothesis can be defined as:

students’ mean score in both sections after the quiz is

similar, . The null hypothesis is

rejected with p=0.004. Additionally, the null hypothesis that

the mean score in section 1 is higher than the mean score in

section 2 after the quiz, is rejected

with p=0.002. Hence, it cannot be accepted that section 1

improved the same or more than section 2. Therefore, our

second hypothesis, active learning improves understanding

of parallel programming , is more

likely.

B. Survey Results

The quantitative survey results (Table VII) show

positive feedback from the students on our interactive

teaching activity. The mean score for each question in both

sections was great than 6, indicating the students felt it was

a beneficial experience, confirming the results seen from

their quiz scores. On the qualitative questions, many

students commented positively on our teaching activities. In

particular, some students appreciated the informative and

clear notes, tasks and visualizations. Other students found it

useful that they were showed how to parallelize serial

algorithms. On the other hand, a common theme emerged in

student’s negative feedback. Students commented on the

short amount of time to cover such an important subject.

Further, students requested additional time and activities on

parallel programming. Some students wanted the topics to

be explored more deeply. Some students wanted more

guidance on how to run parallel code with Visual Studio.

TABLE VIII. QUANTITATIVE QUIZ RESULTS FOR SECTION 1

Questions Mean STD Max Min

Q I (out of 10) 7.88 1.22 10 5

QII (out of 10) 8,18 1.42 10 4

QIII (out of 10) 7.71 1.96 10 3

QIV(out of 10) 7.56 1.70 10 4

TABLE IX. QUANTITATIVE QUIZ RESULTS FOR SECTION 2

Questions Mean STD Max Min

Q I (out of 10) 6.70 2.05 10 1

QII (out of 10) 7.30 2.30 10 4

QIII (out of 10) 6.61 1.96 10 1

QIV(out of 10) 6.52 2.74 10 4

VII. DISCUSSION AND CONCLUSION

In this paper, we presented an innovative approach to

teaching parallel programming to undergraduate students.

Our approach combined several ingredients to improve the

effectiveness of learning. We engaged the students with

visualizations, role play, and practical exercises. Moreover,

we provided the students with informative notes and source

code. We also tested the effect of active learning on

students’ understanding of parallel programming. Our

evaluation shows a significant improvement in

understanding theoretical and practical PDC topics. Further,

the active learning approach seems to give students an

advantage in terms of allowing them to engage in the

material and learn it more effectively. To complement our

efforts, we allowed the students to practice PDC topics

further by asking them to use parallelism in their course

projects. Overall the result was positive with a majority of

students successfully implementing parallel techniques into

their own code.

Despite the promising results, we believe there is still

room for improvement. We believe more time needs to be

given to covering PDC topics in more depth, and allowing

the students to practice more exercises. For instance, it

would be very helpful to have the students practice more

exercises in the lab, and see the speedup factor. In our

teaching activity, we used Intel Core i7 processor to

illustrate the usage of parallelism. However, we believe

allowing the students to work on clusters to process large

sets of data would be more practical.

Long term, a full parallel programming course is

anticipated to grow students into practical preparation for

the real world.

ACKNOWLEDGEMENTS

We would like to thank NSF/IEEE-TCPP for awarding us

the Early Adopters 2015 award to integrate parallelism into

our computer science undergraduate curriculum at UMKC.

We would also to thank professors Appie Van de Liefvoort

and Brian Hare for their comments. Finally, we would like

to thank the CS 303 Data Structures students from UMKC

for their enthusiastic participation.

REFERENCES

[1] D. Gelernter, “Why I’m Not Looking to Hire Computer-Science
Majors”. Wall Street Journal, 2015.

[2] T. White. “Hadoop: The Definitive Guide”. O’Reilly Media, Inc., 1st
edition, 2009.

[3] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica.
“Spark: Cluster Computing with Working Sets”. In Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, 2010, pages 10–10,

[4] J. Dean and S. Ghemawat. “MapReduce: simplified data processing
on large clusters”. Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation, 2004, p 10-10,

[5] M. Estep, F. M. “Methods for Teaching a First Parallel Computing
Course to Undergraduate Computer Science Students”. Proceedings
of the International Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS), 2014.

[6] A. S. Rabkin, Charles Reiss, Randy Katz, and David Patterson.
“Experiences teaching MapReduce in the cloud”. In Proceedings of
the 43rd ACM technical symposium on Computer Science Education
(SIGCSE '12), 2012, pp. 601-606.

[7] M. Arroyo, “Teaching Parallel and Distributed Computing topics for
the Undergraduate”. Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), IEEE 27th Internationa, 2013.

[8] R. Keller, “Teaching parallel programming to undergrads with hands-
on experience”, Workshop on Parallel, Distributed, and High-
Performance Computing in Undergraduate Curricula (EduPDHPC),
2013.

[9] A. Marowka., “Think Parallel: Teaching Parallel Programming
Today”, IEEE Computer Society, 2008.

[10] D. Johnson, D. Kotz, F. Makedon, “Teaching Parallel Computing to
Freshmen”, 1994, Conference on Parallel Computing for
Undergraduates, Colgate University, 1994.

[11] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, H. Thiry, A
Module-based “Approach to Adpoting the 2013 ACM Parallel
Computing”, 2013, 2015, SIGCSE ’15 Proceedings of the 46th ACM
Technical Symposium on Computer Science Education.

[12] Y. Pan, “Teaching Parallel Programming Using Both High-Level and
Low-Level Languages”, Computational Science — ICCS 2002, 2002.

[13] D. Weltman, “A Comparison of Traditional and Active Learning
Methods: An Empirical Investigation Utilizing a Linear Mixed
Model”, PhD Thesis, The University of Texas at Arlington, 2007, p.7.

[14] Freeman, S. et al. “Active learning increases student performance in
science, engineering, and mathematics”. Proceedings of the National
Academy of Scientists, 111(23), 8410–
8415. http://dx.doi.org/10.1073/pnas.1319030111, 2014.

[15] R. Hake, “Interactive-engagement versus traditional methods: A six-
thousand-student survey of mechanics test data for introductory
physics courses”. American Journal of Physics, 1998.

[16] B. Chapman, G. Jost, R. Van Der Pas, “Using OpenMP”, The MIT
Press, Cambridge, Massachusetts, 2008.

[17] M. Kuhail, J. Neustrom, “Materials of Interactive Teaching of
Parallel Computing”, Found at:
https://www.dropbox.com/sh/b84d974mn9ruypp/AACl7i67geNgvA5
xAlaX2s4Ea?dl=0 , 2017.

[18] “N-Queen Problem”, Found at:

 http://mathworld.wolfram.com/QueensProblem.html , 2017.

[19] E. Koffman, P. Wolfgana, “Objects, Abstractions, Data Structures and
Design Using C++”, Wiely 2005.

