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a b s t r a c t

In this paper, we address the problem of fast processing of SPARQL queries on a large RDF dataset,
where the RDF statements are quadruples (or quads). Quads can capture provenance or other relevant
information about facts. This is especially powerful in modeling knowledge graphs, which are becoming
increasingly important on the Web to provide high quality search results to users. We propose a new
approach called RIQ that employs a decrease-and-conquer strategy for fast SPARQL query processing.
Rather than indexing the entire RDF dataset, RIQ identifies groups of similar RDF graphs and creates
indexes on each group separately. It employs a new vector representation for RDF graphs and locality
sensitive hashing to construct the groups efficiently. It constructs a novel filtering index on the groups
and compactly represents the index as a combination of Bloom and Counting Bloom Filters. During query
processing,RIQ employs a streamlined approach. It constructs a query plan for a SPARQLquery (containing
one or more graph patterns), searches the filtering index to quickly identify candidate groups that may
contain matches for the query, and rewrites the original query to produce an optimized query for each
candidate. The optimized queries are then executed using an existing SPARQL processor that supports
quads to produce the final results. We conducted a comprehensive evaluation of RIQ using a real and
synthetic dataset, each containing about 1.4 billion quads. Our results show that RIQ can outperform its
competitors designed to support named graph queries on RDF quads (e.g., Jena TDB and Virtuoso) for a
variety of queries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Resource Description Framework (RDF) is a standard
model for data representation and interchange on the Web [1].
Today, RDF uses IRIs to name entities and their relationships. It
enables easy merging of different data sources. While RDF was
introduced in the late 90s as the data model for the Semantic
Web, only in recent years, it has gained popularity on the Web.
For example, Linked Data [2] exemplifies the use of RDF on the
Web to represent different knowledge bases (e.g., DBpedia [3]).
Another example is Wikidata [4], a sister project of Wikipedia,
which publishes facts in RDF. Advanced RDF technologies provide
the ability to conduct semantic reasoning in domains such as
biopharmaceuticals, defense and intelligence, and healthcare.
Several companies have adopted Semantic Web technologies for
different use cases such as data aggregation (e.g., Pfizer [5]),
publishing datasets on theWeb and providing better quality search
results (e.g., Newsweek, BBC, The New York Times, Best Buy) [6].

∗ Corresponding author.
E-mail addresses: anaskatib@mail.umkc.edu (A. Katib),

vgslavov@mail.umkc.edu (V. Slavov), raopr@umkc.edu (P. Rao).

Another important use case of RDF is in the representation of
knowledge graphs, which are emerging as a key resource for com-
panies like Google [7], Facebook [8], and Microsoft [9] to provide
higher quality search results and recommendations to users. Es-
sentially, a knowledge graph is a collection of entities, their proper-
ties, and relationships among entities. Using SPARQL [10], queries
can be posed on these knowledge graphs.

In RDF, a fact or assertion is represented as a (subject, predicate,
object) triple. A set of RDF triples can be modeled as a directed,
labeled graph. A triple’s subject and object denote the source and
sink vertices, respectively, and the predicate is the label of the edge
from the source to the sink. An RDF quad is denoted by a (subject,
predicate, object, context). The context (a.k.a. graph name) is used
to capture the provenance or other relevant information of a triple.
This is especially powerful in modeling the facts in a knowledge
graph. Moreover, there are datasets and knowledge bases on the
Web such as Billion Triples Challenges [11], Linking Open Govern-
ment Data (LOGD) [12], and Yago [13] which contain over a billion
quads. One can view these datasets as a collection of RDF named
graphs. Using SPARQL’s GRAPH keyword [10], a query can be posed
on RDF named graphs to match a specific graph pattern within any
single RDF graph.
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Fig. 1. Dataset D containing RDF quads.

The popularity of the RDF data model coupled with the
availability of very large RDF datasets continues to pose interesting
technical challenges for storing, indexing, and query processing of
RDF data. In this paper, we address the problem of fast processing
of SPARQL queries on RDF quads. In recent years, there has been
a flurry of interest within the database community to develop
scalable techniques for indexing and query processing of large RDF
datasets. Several techniques have been proposed for RDF datasets
containing triples [14–21], where each triple consists of a subject,
predicate, and an object. One may wonder if we can simply ignore
the context in a quad and use any of the previous approaches
for processing a query with the GRAPH keyword. Unfortunately,
this may produce incorrect results, because subpatterns of a graph
pattern may match RDF terms in different graphs. Furthermore,
none of these approaches has investigated how large, complex
graph patterns (e.g., containing undirected cycles) in SPARQL
queries can be processed efficiently. Evidently, RDF-3X [16], a
popular scalable approach for a local environment, yields poor
performance when SPARQL queries containing large, complex
graph patterns are processed over large RDF datasets [22]. This
is because of the large number of join operations that must be
performed to process a query. We argue that, on RDF datasets
containing billions of quads, any approach that first finds matches
for subpatterns in a large graph pattern and then employs join
operations to merge partial matches will face a similar limitation.

Motivated by the above reasons,we developed a new tool called
RIQ (RDF Indexing onQuads) for fast processing of SPARQL queries
on RDF quads. The salient features of RIQ are summarized below:
• RIQ adopts a new vector representation for RDF graphs and

graph patterns in SPARQL queries. This representation captures
the properties of the triples in an RDF graph and triple patterns
in a query. It facilitates grouping similar RDF graphs using locality
sensitive hashing [23] and building a novel filtering index for
efficient query processing. RIQ uses a combination of Bloom Filters
and Counting Bloom Filters to compactly store the filtering index.
In addition to the filtering index, each group of similar RDF graphs
is indexed separately rather than constructing a single index on the
entire collection of RDF graphs.
• RIQ employs a streamlined approach to efficiently process

a SPARQL query via the decrease-and-conquer strategy. Using the
filtering index, RIQ quickly identifies candidate groups of RDF
graphs that may contain a match for the query. It methodically
rewrites the original query and executes optimized queries on the
candidates using a conventional SPARQL processor that supports
quads (e.g., Jena TDB [24]).
• RIQ achieved high performance on a real-world and synthetic

dataset, each containing about 1.4 billion quads, on a variety
of SPARQL queries. It yielded superior performance for high
selectivity queries that matched a small fraction of the named
graphs in a dataset, when I/O was the dominating factor.

A preliminary version of this work appeared in the 17th
International Workshop on the Web and Databases (WebDB)
2014 [22].

The rest of the paper is organized as follows. Section 2 provides
the background onRDF and SPARQL. Section 3 describes the related
work and the motivation of our work. Section 4 describes the
novel design of RIQ including the new vector representation of RDF
graphs and graph patterns, filtering index construction, and the
query processing approach. Section 5 presents the performance
evaluation results and comparison of RIQ with its competitors.
Finally, we provide our concluding remarks in Section 6.

2. Background and preliminaries

In this section, we provide a brief background on RDF and
SPARQL. After that, we describe popular techniques based on
hashing that underpin the design of RIQ.

2.1. RDF and SPARQL

The RDF data model provides a simple way to represent any
assertion as a (subject, predicate, object) triple. A collection of
triples can be modeled as a directed, labeled graph. A triple can
be extended with a graph name (or context) to form a quad. Quads
with the same context belong to the same RDF graph.

Using SPARQL, one can express complex graph pattern queries
on RDF graphs. A triple pattern contains variables (prefixed by ?)
and constants. A Basic Graph Pattern (BGP) in a query combines
a set of triple patterns. During query processing, the variables in
a BGP are bound to RDF terms in the data, i.e., the nodes in the
same RDF graph, via subgraph matching [10]. Common variables
within a BGP or across BGPs denote a join operation on the variable
bindings of triple patterns. UNION combines bindings of multiple
graph patterns; OPTIONAL allows certain patterns to have empty
bindings; FILTER EXISTS/NOT EXISTS tests for existence/non-
existence of certain graph patterns. The variable ?g will be bound
to the contexts of those RDF graphs that contain a match for the
entire set of graph patterns and predicates, if any, inside the GRAPH
block.

Example 1. Consider the datasetD shown in Fig. 1, which contains
twoRDF graphsG1 andG2. Consider a queryQ shown in Fig. 2. It has
five BGPs. Consider the pattern BGP1 inQ . The bindings for the vari-
able ?city in the triple pattern ?city onto:areaLand ?area
are joined with those for ?city in ?city onto:areaCode
?code. If Q is executed on D, ?g will be bound only to the con-
text of G1, i.e., <http://dbpedia.org/data/Oswego.xml>.
Note that BGP3 does not have a match in G2 as the only country
mentioned in G2 is Cyprus.
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Fig. 2. Query Q .

2.2. Popular techniques based on hashing

2.2.1. Rabin’s fingerprinting
Michael Rabin (1981) proposed a fingerprinting technique to

efficiently generate short hash codes (of configurable length) for
arbitrary length bit strings [25]. If the hash codes of two bit strings
are different, then the bit strings are definitely different. This
technique is popularly called Rabin’s fingerprinting and provides
an efficient method for string matching.

Suppose a data item to be hashed is represented using its bit
string representation. This corresponds to a polynomial in Galois
Field 2 with coefficients 0 or 1. Let us denote this polynomial by p.
We define h(·) = p mod r , where r is an irreducible polynomial
in Galois Field 2 picked at random. This hash function h(·) has low
degree of collision. Suppose we select an irreducible polynomial of
degree d − 1. We can generate d-bit hash values using h(·). Given
two data items x and y, s.t. x ≠ y, P(h(x) = h(y)) ≤ max(|x|,|y|)

2d−1
,

where | · | denotes the number of bits in a data item [26]. As an
example, suppose we choose r to be an irreducible polynomial of
degree 31 and generate 32-bit hash values. Suppose each data item
requires at most 220 bits. Then the probability of collision is less
than 2−11, which is very low in practice.

2.2.2. Locality sensitive hashing
Locality sensitive hashing (LSH) was introduced by Indyk and

Motwani [23] for approximate nearest neighbor search on high-
dimensional data. Intuitively, in LSH, data items are hashed using
several hash functions such that each hash function is more likely
to produce collisions on data items that are similar to each other
than on those that are dissimilar. A benefit of LSH is that it provides
a fast probabilistic method of grouping similar data items in a
datasetwithout computing the exact similarity between every pair
of data items in it. Over the years, LSH has been employed in many
domains, including indexing high dimensional data and similarity
searching [27,28], similarity searching over web data [29] and
in P2P networks [29,30], ranges queries in P2P networks [31],
cardinality estimation over distributed XML documents [32], and
so forth.

Consider two sets S1 and S2 whose similarity based on the Jac-
card index is given by p = |S1∩S2|

|S1∪S2|
. By using LSH (defined on

sets) [29], we can estimate if these two sets are similar (or dis-
similar) given a similarity cutoff without actually computing p. As
a result, we can quickly construct groups of similar sets in a large
databasewithout computing the Jaccard index of every pair of sets.

Let us denote the LSH operation on a set S by LSHk,l,m(S), where
k, l, and m are configurable parameters. LSHk,l,m(S) will produce k
hash values, each in the range [0,m− 1]. We compute LSHk,l,m(S)
as follows [29]: Consider a linear hash function of the form (ax +
b)mod u, where x is the item to be hashed, u is a prime, and a and b
are integers such that 0 < a < u and 0 ≤ b < u. We pick k× l such
random linear hash functions by choosing a and b at random. Let
us denote each hash function by h̄ij. Compute gij(S) = min{h̄ij(x)}
over all items in the set. Create k groups of l values using the output
of all the gij(·) functions, where 1 ≤ i ≤ k and 1 ≤ j ≤ l. For each
group of l values, concatenate these values and hash them to the

range [0,m − 1] (e.g., using Rabin’s fingerprinting). As there are k
groups, LSHk,l,m(S) produces k hash values for S.

It has been shown that for two sets S1 and S2 with Jaccard index
p, Pr[gij(S1) = gij(S2)] = p. Also, the probability that LSHk,l,m(S1)
and LSHk,l,m(S2) have at least one hash value identical (or collision)
is 1− (1− pl)k. (The above properties also hold true for multisets.)

The value of m can be chosen so that the hash values are
represented using 32-bit integers. The values of k and l are typically
chosen based on the desired similarity cutoff between sets and the
computational cost. If we fix k = 100 and l = 10, the cutoff is
close to 0.4 using a total of 1000 linear hash functions. That is, two
sets with similarity less than 0.4 have almost zero probability of
producing any collision. If l = 20, the cutoff increases to 0.6 using
a total of 2000 linear hash functions.

2.2.3. Bloom and counting bloom filters
A Bloom filter (BF) is a randomized data structure to compactly

represent a set of items in order to support membership queries.
A BF maintains an array of n bits, which are initialized to 0, and
usesm independent hash functions with range [0, n−1]. To insert
a data item into this BF, we apply the m hash functions to get the
bit positions in the array. These bits are set to 1. To test if an item
exists in the filter, we apply the same m hash functions and test
if the corresponding bit positions are set to 1. As a result, false
positives may occur. If at least one of those bit positions is 0, then
the item is definitely not present in the filter. A Counting Bloom
filter (CBF) maintains t-bit counters instead of single bits and can
be used to compactly represent multisets. It has been shown that
4-bit counters should be sufficient in most applications based on
how likely is a counter to overflow [33]. Based on howmany items
need to be inserted into a filter, a BF or CBF can be configured to
achieve a particular false positive rate [33].

3. Related work and motivation

3.1. RDF query processing

Today, there are a number of open-source and commercial tools
for storing and querying RDF graphs (e.g., Jena [34,35], Sesame [36],
Virtuoso [37], Garlik 4store [38], AllegroGraph [39], Mulgara [40],
YARS2 [41], Kowari [42], 3Store [43], Bigdata(R) [44], Oracle 11g
RDF [45,46], Neo4j RDF [47]). These tools either store and process
RDF in main-memory, use an RDBMS, or a native RDF database.
The popular approach has been to use relational database systems
for storing, indexing, and querying RDF [34,35,43,36,46,48,49].
Some have attempted a graph based approach of storing and
querying RDF [50,51]; a few have taken a path-based approach
by storing subgraphs in relational tables [52,53]. But these graph
and path-based techniques were evaluated on small RDF datasets.
A few of the proposed techniques are main memory based RDF
stores [54,55].

Unfortunately, the cost of self-joins on a single (triples) table
became a serious bottleneck. Later, Abadi et al. proposed the idea of
vertically partitioning the property tables [56] and used a column-
oriented DBMS to achieve an order of magnitude performance
improvement over previous techniques [14]. Recently, Neumann
et al. developed RDF-3X [16] that builds exhaustive indexes
on the six permutations of (s, p, o) triples. RDF-3X significantly
outperformed the vertical partitioning approach. It uses a new
join ordering method based on selectivity estimates and builds
compressed indexes. Weiss et al. [15] developed Hexastore that
also builds exhaustive indexes. However, Hexastore suffers from
large index sizes due to lack of compression. Atre et al. [17]
developed BitMat to overcome the overhead of large intermediate
join results for queries containing low selectivity triple patterns.
BitMat performs in-memoryprocessing of compressed bitmatrices
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during query processing. Leeka et al. [57] proposed RQ-RDF-
3X by adding quad indexes to RDF-3X to handle queries on
quads and reification statements. As stated by the authors, their
implementation did not support named graph queries.

More recently, Bornea et al. [19] developed DB2RDF by
using an RDBMS to store and query RDF data. By storing the
predicate–object pairs of each subject in the same row of the
relational table, they reduced the number of joins required for star-
shaped BGPs. DB2RDF maintains only subject and object indexes
and employs a novel SPARQL-to-SQL translation technique for
generating optimized queries. Yuan et al. [20] developed TripleBit,
which uses a compact storage scheme for RDF data by representing
triples via a Triple Matrix. For each predicate, TripleBit maintains
SO and OS ordered buckets. Using a collection of indexes and
optimal join ordering, it reduces the size of the intermediate results
during query processing.

A few approaches exploit the graph properties of RDF data
for indexing and query processing [58–62]. These techniques,
however, have been tested only on small RDF datasets containing
less than 50 million triples.

Recently, a few distributed and parallel SPARQL query pro-
cessing approaches were proposed for datasets containing RDF
triples [18,21,63–65]. Huang et al. [18] proposed a parallel SPARQL
query processing approach by partitioning graphs on vertices and
placing triples on different machines. Using n-hop replication of
triples in partitions, they avoid communication between partitions
during query processing. Later, Trinity.RDF was developed [21],
where RDF graphs are stored natively using Trinity, a distributed
in-memory key–value store. Using graph exploration andnovel op-
timization techniques, the size of intermediate results is reduced
leading to faster query execution. Recently, H2RDF+ [63] was pro-
posed and builds eight indexes using HBase. It uses Hadoop to
perform sort-merge joins during query processing. TriAD [64] is
another approach and uses asynchronous inter-node communi-
cation for scalable SPARQL query processing. It outperforms dis-
tributed RDF query engines that rely on Hadoop to perform joins
during query processing. DREAM [65] proposes the Quadrant-IV
paradigm and partitions queries instead of data and selects differ-
ent number ofmachines to execute different SPARQL queries based
on their complexity. It employs a graph-based query planner and
a cost model to outperform its competitors.

Note that RIQ is a centralized approach for efficient query
processing on RDF datasets containing over a billion quads.

3.2. Pattern matching techniques on graphs

A few research attempts have been made for pattern matching
in directed graphs. Chen et al. studied pattern matching on
DAGs [66] by adapting an XML pattern matching algorithm called
TwigStack [67]. Cheng et al. proposed a technique for directed
graphs called R-join to find all occurrences of a graph pattern in a
large data graph [68]. Zou et al. [69] developed amethod for finding
graph pattern matches by considering weight constraints on the
query edges.

Much research has been done on developing efficient methods
for processing exact subgraph matching queries on undirected
graphs. These methods built a filtering index to quickly identify
candidates followed by the verification phase (e.g., using Ullmann’s
algorithm [70]) to discard false matches. They differ in how
they select certain features of the input graph(s) for building
the filtering index. For example, GraphGrep [71] built an index
by selecting paths up to a certain length. On the other hand,
gIndex [72] and FG-index [73] used discriminative frequent
substructures (i.e., subgraphs) in the data as the indexing feature.
TreePi [74] and Tree + ∆ [75] used frequent trees in graphs as
the indexing feature to reduce the index size and construction

cost. Later, QuickSI [76] was proposed to reduce the cost of the
verification phase and leveraged a feature-based index (i.e., using
trees) to speed up the filtering phase.

Some of the techniques avoided frequent pattern mining and
developed transformations on the input graphs for building a
filtering index. For example, C-tree [77] constructed a hierarchical
index by computing graph closures. GDIndex [78] proposed the use
of graph decomposition to index graphs. GCoding [79] mapped the
structure information of graphs into a numerical space using vertex
signatures and graph codes, which are then used for indexing.
GiS [80,81] mapped graphs to signatures using line graphs. These
signatures were then organized by a hierarchical index for fast
filtering.

While the above techniques are designed for graph pattern
matching, they do not support SPARQL queries. On the other hand,
RIQ aims to speed up the processing of SPARQL queries using a
novel filtering index, which organizes summaries of RDF graphs
designed specifically for BGP matching.

3.3. Motivation

The motivation for our work stems from three key observa-
tions: First, knowledge graphs are becoming a powerful resource
for users of the World Wide Web. RDF quads can aptly model the
facts in a knowledge graph, and SPARQL can be used to pose rich
queries on RDF quads. Second, the approaches discussed in Sec-
tion 3.1 were designed to process RDF datasets containing triples.
Simply ignoring the context in an RDF quad and using an existing
approach designed for triples may produce incorrect results due to
bindings for a BGP fromdifferent graphs. For example, consider the
two quads: <a> <b> <c> <g1>. <a> <b> <e> <g2>.
If we use a technique designed to process triples for the query
SELECT ?x WHERE { GRAPH ?g { ?x <b> <c>. ?x
<b> <e>. } } on these quads. Then, ?xwill be bound to <a>
as triples ‘<a> <b> <c>’ and ‘<a> <b> <e>’ will be treated
as part of the same graph. In reality, the correct evaluation of this
query should produce no results. Third, most of the queries tested
by these approaches contain BGPswith amodest number of triples
patterns (at most 8). None of them have investigated how to effi-
ciently process SPARQL queries with large and complex BGPs (e.g.,
containing undirected cycles1). A few examples are shown in Ap-
pendix B.

4. The design of RIQ

In this section,we present the novel design ofRIQ (RDF Indexing
on Quadruples).

4.1. Key components of RIQ

Fig. 4 shows the architecture of RIQ. RIQ is designed to deal
with SPARQL SELECT queries on named graphs that conform
to a subset of the grammar of the SPARQL query language [10].
These queries can contain constructs like UNION, OPTIONAL, and
FILTER. Since the grammar of the SPARQL language is intricate,
we employ a simpler grammar based on the seminal work of
Pérez et al. [82]. The grammar of SPARQL queries is shown in
Fig. 3. Let I , L, and V denote the set of all possible IRIs, literals,
and variables, respectively. The terminal symbol TriplePattern
∈ (I ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ). We use parenthesis in the
grammar to explicitly specify the precedence and associativity of
the operators as suggested by Pérez et al. [82]. According to the

1 Here is an example: {?a <p> ?b. ?b <q> ?c. ?a <r> ?c.}.
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Fig. 3. Grammar of SPARQL queries.

Fig. 4. Overview of RIQ.

SPARQL specification [10], FROM NAMEDmay be used in a SPARQL
query to specify the dataset that should be used for matching on
named graphs. Because our goal is to execute a SPARQL SELECT
query on a dataset with millions of named graphs, we ignore this
specification as it would be impossible to specify all the graphs in
the query. Hence, our grammar does not contain FROM NAMED.

The key components of RIQ are the Indexing Engine, the
Filtering Engine, and the Execution Engine. The Indexing Engine
transforms an RDF graph into its vector representation, constructs
a filtering index based on the vector representation by creating
groups of similar RDF graphs, and builds a separate index on each
group. The Filtering Engine generates a query plan for a SPARQL
query, constructs the vector representation of each BGP in the
query, and identifies, using the filtering index, candidate groups
that may contain a match for the query. The Execution Engine
rewrites the query methodically to generate an optimized query
for each candidate group. It executes the optimized queries using
an existing SPARQL processor that supports quads to produce the
final output.

4.2. Indexing RDF data

We introduce a new vector representation for RDF graphs and
BGPs, which will allows us to capture the properties of the triples
and triple patterns in them. This vector representation plays a key
role in the construction of an effective filtering index,where similar
RDF graphs will be grouped together.

4.2.1. Essential transformations
To begin with, we define two transformations: one for a triple

in an RDF graph and the other for a triple pattern in a BGP. Let P =
{SPO, SP?, S?O, ?PO, S??, ?P?, ??O} be a set of canonical patterns.
Let R denote the set of all possible RDF triples. We denote the
transformation on a triple (s, p, o) ∈ R by fD : P× R→ OD, where
the range OD is show in Table 1 for each canonical pattern. Note
that OD resembles triple patterns (variable names excluded) that
can appear in a BGP.

Next, we denote a transformation fQ : T → P × OQ , where
T denotes the set of triple patterns that can appear in a query.

Table 1
Transformations in RIQ.

Transformation fD Transformation fQ

fD(SPO, (s, p, o)) = (s, p, o) fQ (‘s p o’) = (SPO, (s, p, o))
fD(SP?, (s, p, o)) = (s, p, ?) fQ (‘s p ?vo ’) = (SP?, (s, p, ?))
fD(S?O, (s, p, o)) = (s, ?, o) fQ (‘s ?vp o’) = (S?O, (s, ?, o))
fD(?PO, (s, p, o)) = (?, p, o) fQ (‘?vs p o’) = (?PO, (?, p, o))
fD(S??, (s, p, o)) = (s, ?, ?) fQ (‘s ?vp ?vo ’) = (S??, (s, ?, ?))
fD(?P?, (s, p, o)) = (?, p, ?) fQ (‘?vs p ?vo ’) = (?P?, (?, p, ?))
fD(??O, (s, p, o)) = (?, ?, o) fQ (‘?vs ?vp o’) = (??O, (?, ?, o))

The range P× OQ is shown in Table 1 and identifies the canonical
pattern for a given triple pattern. Although the triple pattern ‘s p o’
has no variables, it is still a valid triple pattern in a BGP.2

The transformations fD and fQ allowus tomap a triple in the data
and a triple pattern in a query to a common plane of reference. This
will enable us to quickly test if a triple pattern in a BGP has a match
in the data.

4.2.2. Pattern vectors
Given an RDF graph with context c , wemap it into a vector rep-

resentation called a Pattern Vector (PV) and denote it by Vc . Essen-
tially, Vc = (Vc,SPO, Vc,SP?, Vc,S?O, Vc,?PO, Vc,S??, Vc,?P?, Vc,??O), where
each Vc,r denotes the vector constructed for r ∈ P. We assume a
hash function H : B → Z∗, where B denotes a bit string and the
range is the set of non-negative integers. Now, we construct Vc as
follows: Initially, each Vc,r is empty. Given a quad (s, p, o, c) in the
graph, for each r ∈ P, we compute H(fD(r, (s, p, o))) and insert it
into Vc,r . We perform this computation on every quad in the graph
to generate Vc . Each Vc,r is finally sorted, which will speed up the
construction of the filtering index. Algorithm 1 shows the steps
involved. Vc requires space linear in the number of quads in the
graph. Note that each Vc,r is a (dynamic) array and not a hash table.

Algorithm 1 PV construction for an RDF graph
Input: An RDF graph G with context c
Output: PV Vc
1: for each (s, p, o, c) ∈ G do
2: for each r ∈ P do
3: insert H(fD(r, (s, p, o))) into Vc,r
4: for each r ∈ P do
5: sort Vc,r

6: return Vc

Our hash function H is based on Rabin’s fingerprinting
technique, which was presented in Section 2.2.1. While IRIs and
literals can be very long, a dictionary can be used to assign unique
IDs to them before applying fD. This will ensure that the length of
the input to H is bounded, thereby guaranteeing low probability of
collision. This will also speed up the computation of H, because the
polynomial p in p mod r is now of a much lower degree.

Because H has very low probability of collision, in practice, we
can view Vc,SPO as a set, because the quads/triples in a graph are
always assumed to be unique. Later in Section 4.2.4, we state a
necessary condition for a BGP match using the PV of an RDF graph,

2 SELECT ?g WHERE { GRAPH ?g { s p o. } }.
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Fig. 5. The PV of G1 . Note that s, p, and o, which appear inside H(·), should be replaced by their actual URIs.

wherein we will perform the subset operation on Vc,SPO if the BGP
of a query has a triple pattern ‘s p o’ in it. Even if there are collisions,
the subset operation on Vc,SPO will still succeed, and there will not
be any false dismissals. On the other hand, the remaining vectors of
Vc should be viewed as multisets, because fD can produce the same
output for different triples due to the presence of ‘?’ in the output.

Algorithm 2 PV construction for a BGP
Input: A BGP q
Output: PV Vq
1: for each triple pattern t ∈ q do
2: (r, oq)← fQ (t)
3: insert H(oq) into Vq,r

4: return Vq

Example 2. Let Fig. 5 denote the PV of the RDF graph G1. For the
canonical pattern ?PO, the quad res:Oswego onto:country
res:United_States <http://.../Oswego.xml> in G1 is
transformed to the tuple (?,onto:country, res:United_
States) by replacing the subject res:Oswego with ?. The hash
of the tuple is stored into the vector for ?PO. The figure also shows
how the hash values are computed for the other canonical patterns.
Once the eight quads of G1 are processed, each vector of the PVwill
have eight hash values.

Given a BGP q, we map it into a PV, denoted by Vq, and
compute it slightly differently: Initially, eachVq,r is empty. For each
triple pattern t in q, we compute fQ (t) to produce a pair (r, o),
where r denotes the canonical pattern for t . We then insert H(o)
into Vq,r . Algorithm 2 shows the steps involved. As before, Vq,SPO

can be viewed as a set. The rest of the vectors of Vq should be
viewed as multisets, because two different triple patterns (each
containing at least one variable) in a BGP may hash to the same
value. For example, if a BGP contains two triple patterns ?s1
onto : utcOffset?o1 and ?s2 onto : utcOffset?o2, then fQ (‘?s1
onto : utcOffset?o1’) = fQ (‘?s2 onto:utcOffset ?o2’) and
therefore, the hash values produced by H will be identical.

Note that we will ignore any triple pattern of the type ?vs
?vp ?vo during the PV construction. This is because such a triple
pattern will match every triple in an RDF graph. Precisely for this
reason, we do not include the canonical pattern ??? in P as every
triple in every RDF graph would produce the same hash value
for ???. As a result, maintaining a vector for ??? in the PV of an
RDF graph would be wasteful as it does not provide any pruning
capability during BGP matching.

Fig. 6. (a) The PV of BGP3 . (b) The PVs of BGP1 .

Example 3. Consider BGP3 of query Q . As shown in Fig. 6(a), the
triple patterns ?city onto:country res:United_States
and ?city onto:postalCode ?postal are transformed to tu-
ples(?,onto:country,res:United_States) and(?,onto:
postalCode,?), respectively. Their hash values are stored in the
vectors for ?PO and ?P?, respectively. Fig. 6(b) shows how BGP1
is mapped into its PV. Because both of its triple patterns produce
tuples that match the canonical pattern ?P?, its PV has only one
vector.

4.2.3. Operations on pattern vectors
Next, we define two operations on PVs, which will be used

during the construction of the filtering index. Our goal is to group
similar PVs (and as a result, similar RDF graphs) together so that
candidate RDF graphs are identified and processed quickly during
query processing.

Definition 1 (Union). Given two PVs, say Va and Vb, their union
Va ∪ Vb is a PV say Vc , where Vc,r ← Va,r ∪ Vb,r and r ∈ P.

Definition 2 (Similarity). Given two PVs, say Va and Vb, their
similarity is denoted by sim(Va, Vb) = maxr∈P sim(Va,r , Vb,r),
where sim(Va,r , Vb,r) =

|Va,r∩Vb,r |
|Va,r∪Vb,r |

.

4.2.4. Index construction
We begin by describing a key necessary condition, which forms

the basis for indexing and query processing in RIQ. Because we
map both the RDF graphs and BGPs into their PVs, we must
characterize the relationship between them when processing a
BGP via subgraph matching. We state the following theorem.
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Algorithm 3 The PV-Index Construction
Input: a list of PVs; (k, l,m): LSH parameters; ϵ: false positive rate
Output: filters of all the groups of similar RDF graphs
1: Let G(V, E) be initialized to an empty undirected graph
2: for each PV Vi do
3: Add a new vertex vi to V
4: for each r ∈ P do
5: {hi1, ..., hik} ← LSHk,l,m(Vi,r)
6: for every vj ∈ V and i ≠ j do
7: if ∃ o s.t. 1 ≤ o ≤ k and hio = hjo then
8: Add an edge {vi, vj} to E if not already present
9: Compute the connected components of G. Let {C1, ..., Ct}

denote these components.
10: for i = 1 to t do
11: Compute the unionUi of all PVs corresponding to the vertices

in Ci
12: Construct a BF for Ui,SPO with false positive rate ϵ given the

capacity |Ui,SPO|

13: Construct a CBF for each of the remaining vectors of Ui with
false positive rate ϵ given the capacity |Ui,∗|

14: Store the ids of graphs belonging to Ci
15: return

Theorem 1. Suppose Vc and Vq denote the PVs of an RDF graph and
a BGP, respectively. If the BGP has a subgraph match in the RDF graph,
then


r∈P(Vq,r ⊆ Vc,r) = TRUE.

Proof. Because q has a subgraph match in the graph, every triple
pattern in q has a matching triple in the graph. Consider a triple
pattern t in q. Let (r, o) ← fQ (t). During the construction of Vq,
we inserted H(o) into Vq,r . Suppose d denotes the matching triple
pattern for t in the graph. During the construction of Vc , we had
inserted H(fD(r, d)) into Vc,r . Also, H(o) = H(fD(r, d)). Therefore,
elements in Vq,r have a one-to-one correspondence with a subset
of elements in Vc,r . Hence, Vq,r ⊆ Vc,r . This is true for every r ∈ P,
and hence,


r∈P(Vq,r ⊆ Vc,r) = TRUE. �

According to Theorem 1, given a BGP, if we can identify those
RDF graphs in the database whose PVs satisfy the necessary
condition, then we have a superset of RDF graphs that contain a
subgraphmatch for the BGP. This also guarantees that there are no
false dismissals.

Example 4. Because BGP3 in Q has a subgraph match in G1, the
vectors for ?PO and ?P? in BGP3’s PV (as shown in Fig. 6(a)) are
subsets of the vectors for ?PO and ?P? in G1’s PV, respectively.

Rather than testing every PV in the database – one-at-a-time –
during query processing, we propose a novel filtering index called
the PV-Index to effectively organizemillions of PVs in the database.
Using this index, we aim to quickly identify candidate RDF graphs
in the early stages of query processing using Theorem 1. Our goal is
to discard most of the non-matching RDF graphs without any false
dismissals. As a result, the subsequent stages of query processing
will process fewer candidates to obtain the final results, thereby
speeding up query processing.

There are two issues that arise while designing the PV-Index:
First, we want to group similar PVs together (and in an efficient
manner) so that for a given BGP, we can quickly discard most
of the non-matching RDF graphs. For this, we will employ LSH
(Section 2.2.2). Second, we want to compactly store the PV-Index
to minimize the cost of I/O during query processing. For this, we
will employ BFs and CBFs (Section 2.2.3).

In Algorithm 3, we outline the steps to construct the PV-Index.
Webuild an undirected graphG, where each vertex ofG represents
a PV. For every PV, we apply LSH on each of its seven vectors.
Suppose there are two PVs such that the application of LSH on

Fig. 7. Grouping five PVs into two connected components (k = 2,m = 10).

their vectors for the same pattern r , produces at least one identical
hash value, thenwe add an edge between the vertices representing
these PVs (Lines 2–8). Essentially, a missing edge between two
vertices indicates that their corresponding PVs are dissimilar with
high probability. Once G is constructed, we compute (in linear
time) the connected components in it. Each connected component
represents RDF graphs whose corresponding PVs are similar with
high probability. We treat these graphs as a group and compute
the union of their PVs (Line 11). The union operation summarizes
the PVs as well as preserves the condition stated in Theorem 1.
(The individual vectors in a PV are kept sorted so that the union
operation can be performed in linear time.)

Example 5. Let us consider the example in Fig. 7 with five PVs,
Va, Vb, Vc , Vd, and Ve. Suppose the application of LSH on some of
the patterns produces the hash values as shown. Because Va,S?O
and Vc,S?O share the hash value 2, we add an edge between Va
and Vc in the graph. Also, Vb,?P? and Vd,?P? share the hash value
7 and, Vd,?P? and Ve,?P? share the hash value 4. Therefore, we add
edges between Vb and Vd and Vd and Ve. Ultimately, we have two
connected components.

To compactly represent the union computed for a connected
component, we use a combination of one Bloom filter (BF) and
six Counting Bloom filters (CBFs). The vector for the canonical
pattern SPO is stored using a BF and the others are stored using
CBFs. Each filter of a vector is configured for a false positive rate
of ϵ and capacity equal to the cardinality of the vector (Lines 12
and 13). For each connected component, we also store the IDs
of graphs belonging to it. In summary, the BFs and CBFs for all
the connected components constitute the PV-Index. Each group of
graphs is separately indexed using a tool like Jena TDB.

4.3. Query processing

Next, we present the streamlined approach adopted by RIQ
for efficient SPARQL query processing via a decrease-and-conquer
strategy. RIQ constructs a plan for the query and searches the PV-
Index to quickly identify the candidate groups of RDF graphs that
may contain a match for the query. It rewrites the original query
methodically for each candidate group and executes optimized
queries on them (using an existing SPARQL query processor) to
produce the final results.

Given aquery, the first step is to parse itsGRAPHblock according
to the SPARQL grammar and generate a tree-representation, which
we call the BGP Tree. This tree serves as an execution plan for
processing individual BGPs in the query. It is evaluated on each
connected component to produce an optimized query, which is
then executed on that connected component. As an example,
consider the query in Fig. 2, which is represented by the BGP Tree
in Fig. 8(a).
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(a) A processed BGP Tree.

(b) Pruned BGP Tree.

Fig. 8. Query processing.

Given a node n in the BGP Tree, let eval[n] be a Boolean variable
for the node to capture the status of the evaluation of the BGP Tree
on a connected component of the PV-Index.We initialize eval[n] =
FALSE for every node in the tree. We invoke Algorithm 4 on each
connected component, starting from the root of the BGP Tree in
depth-first order. When a node represents a BGP (Line 1), we test
the necessary condition stated in Theorem 1 by calling Algorithm
5. This involves the processing of membership queries on the
BF and CBFs constructed for that connected component. When a
node represents the AND operation (i.e., ‘.’), and a child of that
node evaluates to FALSE, we skip processing the other child node
(Line 6). This is because theRDF graphs belonging to that connected
component will not produce a match for the subexpression rooted
at that node. When a node represents a UNION operation, at
least one of the children should evaluate to TRUE to produce a
match (Line 14). While the node under OPTIONAL is evaluated
(Line 17), the status of the evaluation is ignored during the BGP
Tree evaluation (Line 18) because of the semantics of OPTIONAL
in SPARQL. However, the status of the node will be used during the
generation of an optimized query.

If eval[root] = TRUE, then the group of RDF graphs belonging
to that connected component is a candidate for further processing.
For this candidate, an optimized SPARQL query can be generated
by traversing the BGP Tree and checking the evaluation status of
each node. We prune the BGP Tree to produce a pruned BGP Tree

Fig. 9. Optimized query.

from which the optimized query can be constructed. Algorithm 6
shows the steps involved during the pruning process starting from
the root of the BGP Tree. Any predicates within FILTER will be
included in the optimized query. All the projected variables in the
original query are projected in the optimized query. It should be
noted that the optimized query is executed on the candidate for which
the BGP Tree was evaluated. An optimized query is executed on
a candidate using an existing tool like Jena TDB or Virtuoso. The
results from all the candidates are combined to produce the final
output of the query.

Fig. 8(b) shows the pruned BGP Tree for the example in Fig. 8(a).
Based on pruned BGP Tree, we generate the optimized query
shown in Fig. 9. In this query, the OPTIONAL block and one block
in the UNION are absent.
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Algorithm 4 EvalBGPTree(node n, conn. component j)
1: if n represents TriplesBlock then
2: Let q denote the BGP
3: eval[n] ← IsMatch(q, j)
4: else if n represents n1 . n2 then
5: eval[n1] ← EvalBGPTree(n1, j)
6: if eval[n1] is FALSE then
7: eval[n] ← FALSE {//skip processing n2}
8: else
9: eval[n2] ← EvalBGPTree(n2, j)

10: eval[n] ← eval[n1] ∧ eval[n2]

11: else if n represents n1 UNION n2 then
12: eval[n1] ← EvalBGPTree(n1, j)
13: eval[n2] ← EvalBGPTree(n2, j)
14: eval[n] ← eval[n1] ∨ eval[n2]

15: else if n represents n1 OPTIONAL n2 then
16: eval[n1] ← EvalBGPTree(n1, j)
17: eval[n2] ← EvalBGPTree(n2, j)
18: eval[n] ← eval[n1]

19: else if n represents n1 FILTER n2 then
20: eval[n1] ← EvalBGPTree(n1, j)
21: eval[n2] ← EvalBGPTree(n2, j)
22: eval[n] ← eval[n1] ∧ eval[n2]

23: else if n represents EXISTS n1 then
24: eval[n1] ← EvalBGPTree(n1, j)
25: eval[n] ← eval[n1]

26: else if n represents NOT EXISTS n1 then
27: eval[n1] ← EvalBGPTree(n1, j)
28: eval[n] ← TRUE
29: else if n represents Expression then
30: eval[n] ← TRUE {//skip processing predicates}
31: return eval[n]

Algorithm 5 IsMatch(BGP q, conn. component j)
1: For connected component j, let Fj,r denote the BF or CBF

constructed for pattern r
2: for each r ∈ P do
3: Construct Fq,r with the same capacity and false positive rate

as FUj,r
4: for each bit in Fq,SPO set to 1 do
5: if the corresponding bit in FUj,SPO is 0 then
6: return FALSE
7: for each r ∈ P \ {SPO} do
8: for each non-zero counter in Fq,r do
9: Let c be the counter value

10: if the corresponding counter in FUj,r is less than c then
11: return FALSE
12: return TRUE

Algorithm 6 PruneBGPTree(node n)
1: if eval[n] = FALSE then
2: if n is a Pattern of NOT EXISTS then
3: return
4: else if n is a Pattern of UNION or OPTIONAL then
5: Prune away UNION or OPTIONAL
6: Prune away the subtree rooted at n
7: else
8: for each child c of n do
9: PruneBGPTree(c)

10: return

5. Performance evaluation

In this section, we report a comprehensive performance
evaluation of RIQ on a real and a synthetic dataset, eachwith about
1.4 billion RDF statements.

5.1. Software, implementation, and hardware setup

We compared RIQ with state-of-the-art RDF engines designed
to support named graph queries: Jena TDB and Virtuoso. Both of
them can index RDF datasets with billions of quads and process
SPARQL queries with the GRAPH keyword. Note that Virtuoso is a
commercial tool and has been heavily optimized over the years.
We also compared RIQ with a popular approach for indexing and
query processing RDF triples, namely, RDF-3X. However, for a fair
comparison, we employed a reification approach to map quads
to triples before indexing with RDF-3X. We also transformed the
original SPARQL queries (with the GRAPH keyword) so that RDF-
3X could produce the correct results. We provide more details on
the reification approach in Section 5.5

In our experiments, we used Apache Jena 2.11.1 (TDB), Virtuoso
Open-Source Edition 7.1.0, and the latest version of RDF-3X. RDF-
3X and Virtuoso are written in C++. Jena TBD is a Java codebase.
RIQ is a C++ codebase and uses popular open-source libraries for
parsing RDF data [83] and constructing BFs and CBFs [84]. We ran
all the experiments on a 64-bit Ubuntu 12.04 machine with 4 Intel
Xeon 2.4 GHz cores and 16 GB RAM.

5.2. Datasets and queries

We used a real and a synthetic dataset in our experiments.
The real dataset was BTC 2012 [11], which is widely used in the
Semantic Web community. It contained 1.36 billion RDF quads
with 57,000 unique predicates and 9.59million RDF named graphs.
As we did not readily have access to a synthetic RDF dataset with
quads, we decided to generate one using the Lehigh University
Benchmark (LUBM) [85]. We generated a dataset with 1.38 billion
triples, 18 unique predicates, and 10,000 universities. The triples
were divided across 200,004 files, and each file was treated as an
RDF graph. Thus, we assumed the context for each triple to be
a URI based on the file name. Our sole purpose of doing so was
to test RIQ’s performance for processing named graph queries on
a well-known synthetic dataset. In all, LUBM had 200,004 RDF
named graphs. One should note that while BTC 2012 contained
RDF data crawled from theWeb and had a large number of distinct
properties, LUBMwas very homogeneous and had a small number
of unique predicates.

We used a query workload with varying number of named
graph matches to test the performance impact of RIQ’s decrease-
and-conquer approach. In Table 2, we list the queries for both BTC
2012 and LUBM. The table also shows the number of BGPs and
triples patterns in each query along with the number of results
and matching named graphs for that query. Within each category
(i.e., large, small, or multiple BGPs), the queries are ordered by the
increasing number of named graphmatches. The actual queries are
listed in Appendix A.

For BTC 2012, the query set included 2 SPARQL queries with
large, complex BGPs (B1–B2) and 5 others (B3–B7) with small
BGPs. In addition, there were 4 queries (B8–B11) with multiple
BGPs combined using constructs like UNION and OPTIONAL.
Note that B10 and B11 were derived from the DBpedia SPARQL
Benchmark [86]. Overall, these queries matched a small fraction
of the named graphs in the dataset and had high selectivity. (BTC
2012 had a total of 9.59 million RDF named graphs.)
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Table 2
Queries for BTC 2012 and LUBM. Note (l) indicates a query has a large BGP, (s) indicates a query has a small BGP, and (m)
indicates a query has multiple BGPs. Within each group, the queries are ordered by the number of named graphmatches.

Dataset Query # of BGPs # of triple # of results/# of named
patterns graphs matched

B1 (l) 1 19 6/1
B2 (l) 1 21 5/2

B B3 (s) 1 5 0/0
T B4 (s) 1 5 12,101,709/2020
C B5 (s) 1 6 146,012/3691

B6 (s) 1 7 1,460,748/3691
2 B7 (s) 1 4 47,493/6413
0 B8 (m) 7 12 196/1
1 B9 (m) 4 7 149,306/25,016
2 B10 (m) 5 8 249,318/25,016

B11 (m) 2 5 525,435/123,171

L1 (l) 1 22 0/0
L2 (l) 1 18 24/1
L3 (l) 1 23 16/6
L4 (s) 1 6 0/0

L L5 (s) 1 4 172/21
U L6 (s) 1 5 8341/21
B L7 (s) 1 6 440,834/175,559
M L8 (s) 1 6 468,047/179,847

L9 (s) 1 2 10,798,091/200,004
L10 (s) 1 1 25,205,352/200,004
L11 (s) 1 1 79,163,972/200,004

For LUBM, the query set included 3 SPARQL queries with large,
complex BGPs (L1–L3) and 8 others (L4–L11) with small BGPs
that are variations of the queries in the LUBM benchmark. Queries
L1–L6 matched a small fraction of the named graphs in the dataset
and had high selectivity. On the other hand, queries L7–L8matched
about 88% of the named graphs in LUBM, and L9–L11 matched
100% of the named graphs in the dataset. We regard L7–L11 to be
low selectivity queries. (LUBM had a total of 200,004 RDF named
graphs.) Note that each query in this query set had only one BGP.

One may wonder if blank nodes are supported by RIQ as the
queries used in our experiments do not contain blank nodes. In
SPARQL [10], blanknodes in a query act as variables. So it is possible
to support blank nodes inRIQ by replacing each distinct blank node
in a BGP with a unique variable name. The PV of the BGP can be
generated as before using Algorithm 2. The newly added variables
will not be projected in the query.

5.3. Evaluation metrics

For comparing the query processing performance of RIQ
and its competitors, we measured the wall-clock time taken
by each approach to process a query in the cold and warm
cache settings, and computed the average over 3 runs. We
dropped the file system buffer cache by issuing the command
echo 3 > /proc/sys/vm/drop_caches. For RIQ, we also
measured the filtering time for a query (using the PV-Index) along
with the % of total query processing time consumed by the filter-
ing phase, the number of candidate groups identified by the fil-
tering phase, and the number of candidate groups containing true
matches for the query.

For the experiments, Jena TDB was executed with its default
statistics-based optimization. Virtuoso was executed with its
default settings and optimizations enabled.Whenever an approach
ran for more than four hours, we report the time taken as
‘‘14400+’’.

5.4. SPARQL processor used by RIQ

RIQ relies on an existing SPARQL processor that supports quads
(e.g., Jena TDB, Virtuoso) to query the candidate groups obtained

after filtering. In our experiments, RIQ used either Virtuoso or
Jena TDB depending on the number of candidate groups identified
by the filtering phase. RIQ used Virtuoso whenever the filtering
phase identified just a couple of candidate groups for a query and
Jena TDB otherwise. This is because Virtuoso is a client–server
software, where the Virtuoso server performs the indexing and
query processing on a given database. The Virtuoso client accepts
queries and sends them to the Virtuoso server for processing. So
when RIQ used Virtuoso, we had to ensure that all the Virtuoso
servers for the candidate groupswere running and ready to process
the optimized queries generated by RIQ immediately after the
filtering phase. It took more than 60 s to start a Virtuoso server
on a candidate group/database. Thus, when the filtering phase
identified a large number of candidate groups (e.g., 10 or more)
for a query, it became tedious to conduct the experiments and
also added unnecessary load on our machine. In such a case, RIQ
programmatically invoked Jena TDB as the underlying SPARQL
processor.

In the context of the queries shown in Table 2, note that RIQ
used Virtuoso as the underlying SPARQL processor for queries B1,
B2, L1, and L2. For the remaining queries, RIQ used Jena TDB. The
number of candidates groups identified for each query is presented
later in Tables 5 and 7.

5.5. Performance evaluation on queries with a single BGP

We conducted the first set of experiments to compare RIQ
with its competitors for queries with a single BGP (i.e., B1–B7 and
L1–L11). Our goal was to demonstrate the effectiveness of RIQ’s
PV-Index and decrease-and-conquer strategy for efficient query
processing.

5.5.1. Approaches compared
RIQ, Jena TDB, and Virtuoso built their respective indexes on

quads in the datasets. Because RDF-3X is designed to query triples,
for fair comparison, we employed a reification approach to repre-
sent quads in a dataset as triples. We computed a unique ID <t>
for each quad <s> <p> <o> <c> and represented that
quad as a set of four triples, namely, <t> <first> <s>,
<t> <second> <p>, <t> <third> <o>, and <t>
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Table 3
RIQ’s index construction cost.

Dataset Construction time (in s) LSH # of Avg. # of False Max. PV-Index
PVs Connected BF/CBFs Total params. unions graphs +ve filter size (GB)

components (k, l) per union rate (ϵ) capacity (M)

BTC 2012 16,700 27,348 2476 46,524 (4,6) 526 18,232 5% 1 6.5

LUBM 15,249 22,711 3402 41,362 (30,4) 487 411 1% 10 12

Table 4
Query processing performance on BTC 2012. The winning approach is shown in bold within shaded cells.

Query Cold cache Warm cache
Time taken (in s) Time taken (in s)
RIQ RIQ− RF Jena TDB Virtuoso RIQ RIQ− RF Jena TDB Virtuoso

B1 (l) 4.06 148.85 14400+ 15.79 5.92 0.67 100.71 14400+ 13.15 0.13
B2 (l) 3.73 158.14 14400+ 23.21 6.04 1.53 114.38 14400+ 20.51 4.43

B3 (s) 22.85 157.49 296.99 16.58 4.50 15.06 101.93 276.72 13.30 1.43
B4 (s) 293.42 412.61 1010.77 295.77 965 256.22 398.42 990.72 148.39 950.07

B5 (s) 65.40 183.16 14400+ 668.28 86.71 43.18 104.38 14400+ 21.65 10.33
B6 (s) 102.96 219.10 14400+ 684.97 350.19 76.90 138.85 14400+ 56.59 342.79

B7 (s) 66.35 183.08 405.29 803.94 81.94 41.18 103.29 387.50 17.09 2.69

B8 (m) 16.29 796.54 n/a 3564.44 39.18 6.79 493.76 n/a 369.81 0.16
B9 (m) 110.70 227.37 n/a 648.93 142.89 57.82 117.01 n/a 33.36 60.42

B10 (m) 116.74 232.37 n/a 663.31 165.52 62.61 123.19 n/a 38.77 88.36

B11 (m) 158.18 272.0 n/a 2052.62 237.58 76.68 133.42 n/a 2102.06 120.28

<fourth> <c>. We converted a SPARQL query with the GRAPH
keyword (on quads) into an equivalent SPARQL query on the reified
version of the dataset. Note that this transformation can be done in
linear time. For example, the query.

SELECT ?u ?v ?w WHERE {
GRAPH ?g { ?u <p> ?v . ?u <q> ?w .}}

was transformed into

SELECT ?u ?v ?w WHERE {
?t0 <first> ?u . ?t0 <second> <p> .
?t0 <third> ?v . ?t0 <fourth> ?g .
?t1 <first> ?u . ?t1 <second> <q> .
?t1 <third> ?w . ?t1 <fourth> ?g . }.

Hereinafter, we will refer to RDF-3X operating on the reified
version of a dataset as RF.

To understand how much performance improvement RIQ
achieves using the PV-Index, we measured the total time taken
to execute a query without the filtering phase in RIQ. That is, we
assumed all the connected components of the filtering index were
candidate groups for an input query and executed the query on
all the groups. (Each candidate group is indexed using Jena TDB or
Virtuoso.) We will refer to this approach as RIQ−.

5.5.2. Index construction
The size of BTC 2012 and LUBM was 218 GB and 217 GB,

respectively. Jena TDB indexed BTC 2012 in 139,804 s, and the
index size was 275 GB. It indexed LUBM in three and a half days,
and the index size was 280 GB. Virtuoso indexed BTC 2012 in five
and a half days, and the index size was 77 GB. It indexed LUBM in 3
days, and the index size was 43 GB. RF indexed the reified version
of BTC 2012 and LUBM in about 3 days each. The index size for BTC
2012 and LUBM was 274 GB and 259 GB, respectively.

Next, we report the filtering index construction cost of RIQ
on BTC 2012 and LUBM. Table 3 shows the breakdown of the
total PV-Index construction time including the time to construct

the PVs, the connected components, and the BF/CBFs. During the
construction of PVs,we first assignedunique IDs toURIs and literals
in a dataset before applying the hash function H, which produced
32-bit hash values as output. The LSH parameters used for the PV-
Index construction are also shown in the table. Since LUBM was
more homogeneous than BTC 2012, we used a lower similarity
cutoff for LUBM than BTC 2012 to create a reasonable number
of groups with similar RDF graphs. The PV-Index for BTC 2012
and LUBM had 526 and 487 connected components, respectively.
The average number of graphs per connected component, the
parameters used to tune the filters, and the size of the PV-Index
are also reported in Table 3. Overall, the size of the PV-Index was
less than 6% of the total dataset size. This shows that the PV-Index
index is indeed compact, which can facilitate fast pruning of the
groups of similar graphs during query processing.

5.5.3. Processing queries with a large, complex BGP
In this subsection,we report the performance evaluation results

of RIQ and its competitors for processing named graph queries
containing a large, complex BGP on RDF quads. Each large, complex
BGP had at least one undirected cycle.

BTC 2012. The results for B1 and B2 on BTC 2012, a dataset with
9.59 million RDF named graphs, are reported in Table 4. In the
cold cache setting, RIQ outperformed its competitors for both B1
and B2, each of which had a large, complex BGP in it. While RIQ
was more than 3 times faster than Jena TDB for both the queries,
it was also able to beat Virtuoso, a commercial tool. In Table 5,
we report the filtering performance of RIQ for B1 and B2. Both
B1 and B2 were high selectivity queries with matches in one and
two named graphs, respectively. RIQ filtering index was effective
in quickly identifying a small number of candidate groups from a
total of 526 groups/unions followed by efficient refinement on the
candidate groups. The average number of named graphs per group
was 18,232 as reported in Table 3. Therefore, itwas faster than both
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Table 5
RIQ’s filtering cost on BTC 2012.

Query Filtering cost # of candidate groups # of groups w/
Filtering time (in s), % of total time identified/processed matches
Cold cache Warm cache

B1 1.53, 37.68% 0.18, 26.87% 1 1
B2 1.28, 34.32% 0.13, 8.50% 2 2

B3 3.86, 16.89% 0.15, 1.00% 63 0
B4 1.67, 0.57% 0.08, 0.03% 140 112
B5 1.67, 37.68% 0.09, 0.23% 166 73
B6 1.78, 1.73% 0.10, 0.13% 164 73
B7 1.75, 2.64% 0.09, 0.23% 173 102

B8 6.42, 39.41% 0.66, 9.72% 18 1
B9 5.12, 4.63% 0.78, 1.35% 195 145
B10 5.15, 4.41% 0.85, 1.36% 195 145
B11 6.21, 3.60% 0.61, 0.80% 243 221

Table 6
Query processing performance on LUBM. The winning approach is shown in bold within shaded cells. A ⋆ indicates that the approach aborted
after the reported time.

Query Cold cache Warm cache
Time taken (in s) Time taken (in s)
RIQ RIQ− RF Jena TDB Virtuoso RIQ RIQ− RF Jena TDB Virtuoso

L1 (l) 10.63 66.94 14400+ 233.59 136.62 2.15 45.17 14400+ 2.76 77.99

L2 (l) 14.40 214.70 14400+ 520.91 55.87 3.13 47.80 14400+ 5.05 0.30
L3 (l) 64.95 211.05 14400+ 523.78 119.62 9.61 207.12 14400+ 244.82 36.58

L4 (s) 5.24 87.49 14400+ 4.83 13.96 0.23 46.64 14400+ 1.10 0.003
L5 (s) 14.37 79.09 511.88 6.16 8.925 2.93 45.21 486.48 1.43 0.005
L6 (s) 15.52 79.30 600⋆ 9.19 15.315 5.08 46.66 600⋆ 3.67 0.16
L7 (s) 755.35 – 14400+ 2349.70 134.50 741.32 – 14400+ 2346.31 43.04
L8 (s) 759.17 – 14400+ 2357.70 140.46 733.81 – 14400+ 2353.21 37.43
L9 (s) 549.55 – 1232.02 1432.42 166.35 533.52 – 1219.84 1445.41 137.42
L10 (s) 482.12 – 1327.42 14400+ 320.67 499.20 – 1315.40 14400+ 303.62
L11 (s) 814.62 – 1521.32 1511⋆ 961.22 805.20 – 1485 1511⋆ 929.37

Table 7
RIQ’s filtering cost on LUBM.

Query Filtering cost # of candidate groups # of groups w/
Filtering time (in s), % of total time identified/processed matches
Cold cache Warm cache

L1 4.72, 44.40% 0.20, 9.11% 2 0
L2 4.36, 30.27% 0.18, 5.75% 1 1
L3 6.12, 9.42% 0.21, 2.19% 14 6
L4 5.39, 100.00% 0.23, 100.00% 0 0
L5 8.66, 48.06% 0.19, 6.79% 17 17
L6 7.26, 36.37% 0.20, 4.06% 17 17
L7 9.71, 1.29% 0.20, 1.30% 487 437
L8 9.27, 1.22% 0.21, 1.27% 487 453
L9 8.17, 1.39% 0.16, 1.45% 487 487
L10 6.07, 1.26% 0.15, 0.02% 487 487
L11 5.96, 0.73% 0.10, 0.74% 487 487

Jena TDB and Virtuoso. RF was the slowest because the number
of RDF statements was four times more than the original dataset
and the transformed SPARQL queries on the reified version of the
dataset contained very large number of triple patterns (i.e., 72
triple patterns for B1 and 80 triple patterns for B2). This increased
the number of join operations and significantly slowed down the
query processing in RF.

The results for the warm cache setting are shown in Table 4.
RIQ was significantly faster than Jena TDB and RF. While RIQ was
almost three times faster than Virtuoso for B2, it was slower than
Virtuoso for B1.

We also compared RIQwith RIQ− to gauge the benefit provided
by the filtering index during query processing. Clearly, as shown
in Table 4, RIQ was significantly faster than RIQ− for B1 and B2
as it had to process at most 2 candidate groups instead of all the
groups.

LUBM. The results for LUBM, a dataset with 200,004 RDF named
graphs, are reported in Table 6. In the cold cache setting, RIQ
processed queries with large, complex BGPs (L1–L3) significantly
faster than Virtuoso, Jena TDB, and RF. For example, RIQ processed
L2 almost 4 times faster than Virtuoso. It was about twice as fast
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as Virtuoso for L3, where six named graphs were matched for the
query. We report RIQ’s filtering cost for each query along with
the number of candidate groups processed in Table 7. As L1–L3
had high selectivity, RIQ’s decrease-and-conquer approach was
highly effective is pruning a large portion of the dataset to quickly
identify the candidate groups containing matches. As reported
in Table 3, the total number of groups/unions was 487 and the
average number of named graphs per groupwas 411. As before, RF
was the slowest among all the approaches due to the large number
of triple patterns in the transformed SPARQL queries due to the
reification approach. The results for the warm cache setting are
shown in Table 6. For queries L1 and L3, RIQ was the fastest. But
for L2, Virtuoso was the fastest. Jena TDB and RFwere slower than
RIQ and Virtuoso.

Once again, RIQ− was consistently slower than RIQ, which
attests the benefit of RIQ’s filtering index for the tested queries.

From the above experiments, we conclude that RIQ’s decrease-
and-conquer approach yields superior performance over to its
competitors for named graph queries containing large, complex
BGPs, when I/O is the dominating factor in the total query
processing time. Such queries tend to have high selectivities,
and therefore, RIQ filtering index is effective in pruning away
a large portion of the named graphs in a dataset that did not
contain matches. In the warm cache setting, RIQ achieved good
performance overall by winning on three of the five queries.

5.5.4. Processing queries with a small BGP
In this subsection, we present the performance evaluation

results for processing named graph queries containing a small BGP.

BTC 2012. The tested queries (B3–B7) contained less than 8 triple
patterns. They were different in the number of results output and
the number of matching named graphs. This was a good query
workload to evaluate how the performance of RIQ was affected
by an increase in the number of matching named graphs in the
dataset.

As shown in Table 4, RIQ was faster than its competitors in the
cold cache setting for four out of the five queries. For example,
RIQ processed B6 three times faster than Virtuoso. Virtuoso was
faster than RIQ only for B3, where the query returned no results.
RIQ identified 63 candidate groups although none of themhad true
matches.

RIQ’s filtering cost for B3–B7 along with the number of
candidate groups processed are reported in Table 5. Compared to
queries B1–B2,which contained large, complex BGPs, these queries
(expect B3) returned more results and had higher number of
named graphmatches. As a result, the number of candidate groups
identified after the filtering phase was much higher than that for
B1–B2. Despite this, RIQ was able to outperform its competitors
except for B3. This shows that RIQ’s filtering index effectively
prunes away a large portion of the RDFnamed graphs in the dataset
and its decrease-and-conquer approach is suitable for a variety of
SPARQL queries on named graphs in the cold-cache setting. Jena
TDB was slower than RIQ and Virtuoso in most cases.

In thewarm cache setting, Virtuosowas the fastest for three out
of the five queries, and Jena TDBwas the fastest in two of them. The
filtering time of RIQ in this setting is shown in Table 5.

In both the cold and warm cache settings, RIQ consistently
outperformedRIQ− for queries B3–B7 due to the use of the filtering
index.

LUBM. Recall that compared to BTC 2012, LUBM had a small
number of unique predicates. Table 6 shows the results for LUBM
queries L4–L6 in the cold cache setting. RIQ was comparable in
performance with Virtuoso as neither was a clear winner. Jena

Table 8
Geometric mean of the query processing times for BTC 2012. The winning
approach is shown in bold within shaded cells.

Setup Query Geo. mean (in s)
RIQ RF Jena (TDB) Virtuoso

Cold
B1–B2 3.8 14,400 19.1 5.9

B3–B7 78.6 1,907 282.6 100.1

B1–B7 33.3 3,398 130.9 44.7

Warm
B1–B2 1.0 14,400 16.4 0.7
B3–B7 55.5 1,856 33.3 26.2
B1–B7 17.7 3,323 27.2 9.5

TDB, on the other hand, was faster than RIQ and Virtuoso. Overall,
RIQ’s filtering index effectively pruned away a large number of
the named graphs in the dataset that did not contain matches
for a query. (See Table 7.) However, on L7–L11, which matched
a large portion of the named graphs in the dataset (above 88%),
Virtuoso was the fastest in four out of the five queries. While RIQ
was superior in performance to Jena TDB and RF, RIQ’s decrease-
and-conquer approach was less effective as compared to Virtuoso.
This is because the filtering index provided no pruning power as
almost all the named graphs in the dataset had matches. As shown
in Table 7, for L7–L11, 487 candidate groups were identified by the
filtering phase of RIQ. Table 6 shows the results for LUBM in the
warmcache setting. Except for L11, Virtuosowas clearly faster than
other techniques. (Note that Jena TDB and RF aborted during the
execution of queries L11 and L6, respectively.)

We compared RIQ with RIQ− on L4–L6 because the filtering
index was effective in pruning away a large portion of the named
graphs in the dataset. RIQ was significantly faster than RIQ−, and
this attests the benefit of the filtering index for such queries.

From the above results, we conclude RIQ’s strategy of query
processing yields superior performance on high selectivity queries
that matched a small fraction of the named graphs in the dataset,
when the I/O cost was the dominating factor i.e., in the cold cache
setting. However, Virtuoso was more efficient than RIQ on queries
that matched most of the named graphs in the dataset.

5.5.5. Comparison based on geometric mean
Finally, we compared RIQ, RF, Virtuoso, and Jena TDB by

computing the geometric mean of wall-clock time for the queries.
Table 8 shows the geometric mean for queries on BTC 2012 by
considering B1–B2, B3–B7, and all the queries B1–B7. For the cold
cache setting, RIQ was the winner in all cases. For the warm
cache setting, Virtuoso was the winner in all cases. Table 9 shows
the geometric mean for queries on LUBM by considering L1–L3,
L4–L11, and all the queries L1–L11. RIQ was the winner for L1–L3
in both cold and warm cache settings. However, Virtuoso was
the winner for L4–L11 and L1–L11 in both cold and warm cache
settings.

5.6. Performance evaluation on queries with multiple BGPs

We conducted the next set of experiments to compare the
performance of RIQ with its competitors on queries with multiple
BGPs combined using constructs like UNION and OPTIONAL. Our
goal was to demonstrate the effectiveness of RIQ’s streamlined
approach for efficient query processing. Only Jena TDB and
Virtuoso were considered as competitors as they support queries
with such constructs. They were run using their default settings
and optimizations enabled. We also measured the time taken by
RIQ−, wherein the filtering index was not used, and the query was
executed on all the groups.
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Table 9
Geometric mean of the query processing times for LUBM. The winning
approach is shown in bold within shaded cells.

Setup Query Geo. mean (in s)
RIQ RF Jena (TDB) Virtuoso

Cold
L1–L3 21.5 14,400 399.4 97.02

L4–L11 154.4 3,246 425.0 80.9
L1–L11 90.2 5,580 416.3 85.0

Warm
L1–L3 4.0 14,400 13.7 9.3

L4–L11 70.99 3,202 290.83 12.5
L1–L11 32.4 5,533 104.9 11.8

Fig. B.10. Visual representation of BTC queries with large, complex BGPs.

5.6.1. Query processing
The nature of the tested queries is reported in Table 2. Note

that the number of matching named graphs matched for queries
B8–B11 was a small fraction of the total number of named graphs
in BTC 2012. As before, we measured the wall-clock time taken to
process B8–B11 in both cold and warm cache settings, and report
the average over 3 runs. Table 4 shows the results for the cold cache
setting. RIQ outperformed both Jena TDB and Virtuoso for all the
four queries. RIQ’s filtering index was effective in pruning away
a large portion of the named graphs in the dataset that did not
contain any matches. On B8, RIQ showed the best improvement
over Virtuoso and was about 2.4 times faster, where RIQ identified
a total of 18 candidate groups out of 526 after the filtering phase.
(See Table 5 for the number of candidate groups and number of
groups with matches for queries B8–B11.) On the other queries,
RIQ was 1.3–1.5 times faster than Virtuoso. Jena TDB was the
slowest of the three approaches in the cold cache setting. For
example, Jena TDB was about 6 times slower than RIQ. Table 4
also shows the results for the warm cache setting. RIQ was the
fastest for B11; Jena TDB was the fastest for B9 and B10; and

Fig. B.11. Visual representation of LUBM queries with large, complex BGPs.

Virtuosowas thewinner for B8. To summarize,RIQ’s decrease-and-
conquer approach yielded superior performance especially when
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Table 10
Geometric mean for queries B8–B11 on BTC 2012. Best results are shown in
bold within shaded cells.

Cold cache Warm cache
Time taken (in s) Time taken (in s)
RIQ Jena TDB Virtuoso RIQ Jena TDB Virtuoso

76.1 1331.8 121.8 37.2 178.0 17.9

I/O was the dominating factor during query processing, i.e., cold
cache setting.

For B8–B11, RIQ’s filtering time, percentage of total query
processing time spent during filtering, the number of candidate
groups matched after the filtering phase, and the number of
groups with true matches are shown in Table 5. As the number
of candidate groups increased across B8–B11 due to the increase
in the number of named graph matches, the filtering time did not
vary substantially, but the refinement cost increased as expected
leading to an increase in the total query processing time (Table 4).
Since each query (i.e., B8–B11) had more than one BGP, the total
filtering time was usually higher than for that for B3–B7. For each
query, we also measured the time taken by RIQ for parsing, BGP
Tree evaluation, and query rewriting. This cost was under 0.07 s
for each query.

Finally, we measured the performance improvement gained by
RIQ using the filtering index. In both the cold and warm cache
setting, RIQ was faster than RIQ− as the filtering phase identified
a subset of the groups as candidates for the refinement phase
unlike RIQ− which processed all the groups. The timing results are
reported in Table 4, and the number of candidate groups identified
for each query during the filtering phase is reported in Table 5.

The geometric means are shown in Table 10. As before, RIQwas
the winner in the cold cache setting, and Virtuoso was the winner
in the warm cache setting.

5.7. Summary of results

Below we summarize the key findings of our performance
evaluation.

• On SPARQL queries with large, complex BGPs for BTC 2012
and LUBM,RIQ outperformed its competitors consistentlywhen
I/O was the dominating factor, i.e., in the cold cache setting.
Each of these queries had high selectivity with a small number
of named graph matches. The filtering index of RIQ provided
significant benefit during query processing via its decrease-and-
conquer approach by pruning away a large portion of the named
graphs in the dataset that did not containmatches for the query.
As a result, RIQ’s query processing timewas considerably lower
than its competitors. In the warm cache setting, RIQ achieved
good performance overall by being the fastest for three out of
the five queries.
• OnSPARQLquerieswith small BGPs for BTC2012– a real dataset

with large number of distinct properties and named graphs –
RIQ was the fastest in the cold cache setting for four out of
the five queries. Once again, the filtering index of RIQ was very
effective for these high selectivity queries by pruning away a
large portion of the named graphs in the dataset that did not
contain matches. In the warm cache setting, Virtuoso and Jena
TDB performed better than RIQ.
• On the contrary, for LUBM – a synthetic dataset with small

number of predicates and quite homogeneous in nature –
RIQ was comparable in performance with Virtuoso when the
queries matched a small fraction of named graphs in the
dataset. But for low selectivity queries on LUBM that matched
most of the named graphs in the dataset, Virtuoso was the

fastest, and its indexing and query processing approach was
superior to RIQ’s decrease-and-conquer approach.
• On SPARQL queries with multiple BGPs combined using

constructs like UNION and OPTIONAL on BTC 2012, RIQ
outperformed its competitors when I/O was the dominating
factor. These queries matched a small number of named graphs
in the dataset.RIQ’s streamlined approach to processing a query
starting with BGP Tree construction and evaluation, query
rewriting, and execution of optimized queries on the candidate
groups. In the warm cache setting, no single approach won on
all the queries.
• The reification approach to represent quads, i.e., RFwas slower

thanRIQ, Jena TDB, andVirtuoso formost cases. Thiswas largely
due to the large number of triples that were produced due to
the reification process as well as the increase in the number of
triples patterns in the transformed queries.

6. Conclusions

RDF quads can aptly model the facts in a knowledge graph,
which is becoming an important resource for users of the World
Wide Web. Using SPARQL, rich queries can be expressed on
a knowledge graph. In this paper, we presented our approach
called RIQ for fast processing of SPARQL queries on large
datasets containing RDF quads. RIQ employs a decrease-and-
conquer approach to efficiently process SPARQL queries. It groups
similar RDF graphs efficiently using a new vector representation
and popular hashing techniques, and constructs a filtering index
using a combination of BFs and CBFs for compactness. (Each
group of similar RDF graphs is indexed separately.) To process a
SPARQL query, RIQ first searches the filtering index to identify
candidate groups that may contain results for the query. It then
methodically rewrites the query and executes optimized queries
on the candidates using an existing SPARQL processor (e.g., Jena
TDB, Virtuoso) to obtain the final results.

We conducted a comprehensive performance evaluation of RIQ
using real and synthetic datasets, each containing about 1.4 billion
quads. Through our experiments, we observed that RIQ’s decrease-
and-conquer approach enabled efficient query processing of high
selectivity SPARQL queries that matched a small fraction of the
named graphs in a dataset. The filtering index of RIQ was effective
in pruning away a large number of named graphs that did not
contain true matches for the queries. As a result, RIQ significantly
outperformed its competitors like Virtuoso and Jena TDB for such
queries when I/O was the dominating factor. On the other hand,
when a query had low selectivity and matched a large number of
named graphs in a dataset, RIQ’s decrease-and-conquer approach
was less effective than Virtuoso.
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Appendix A. Queries

BTC-2012 queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX geo: <http://aims.fao.org/aos/geopolitical.owl#>
PREFIX collect: <http://purl.org/collections/nl/am/>
PREFIX ore: <http://www.openarchives.org/ore/terms/>
PREFIX fbase: <http://rdf.freebase.com/ns/>
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B1:

SELECT ?s1 ?o1 ?s2 WHERE {
GRAPH ?g {

?s1 collect:acquisitionDate "1980-05-16" .
?s1 collect:acquisitionMethod collect:t-14382 .
?s1 collect:associationSubject ?o1 .
?s1 collect:contentMotifGeneral collect:t-8782 .
?s1 collect:creditLine collect:t-14773 .
?s1 collect:material collect:t-3249 .
?s1 collect:objectCategory collect:t-15606 .
?s1 collect:objectName collect:t-10444 .
?s1 collect:objectNumber "KA 17150" .
?s1 collect:priref "23182" .
?s1 collect:productionDateEnd "1924" .
?s1 collect:productionDateStart "1924" .
?s1 collect:productionPlace collect:t-624 .
?s1 collect:title "Plate commemorating the first Amsterdam-Batavia flight"@en .
?s1 ore:proxyFor collect:physical-23182 .
?s1 ore:proxyIn collect:aggregation-23182 .
?s1 collect:relatedObjectReference ?s2 .
?s2 collect:relatedObjectReference ?s1 .

}
}

B2:

SELECT ?u ?un ?cnt1 ?ctry1 ?on1 ?cnt2 ?ctry2 ?on2 WHERE {
GRAPH ?g {

?u geo:nameShortEN ?un .
?u geo:hasMember ?ctry1 .
?u rdf:type geo:economic_region .
?cnt1 geo:hasMember ?ctry1 .
?cnt1 rdf:type geo:geographical_region .
?cnt1 geo:nameShortEN "Africa"^^xsd:string .
?cnt2 geo:hasMember ?ctry2 .
?cnt2 rdf:type geo:geographical_region .
?cnt2 geo:nameShortEN "Asia"^^xsd:string .
?ctry1 geo:nameOfficialEN ?on1 .
?ctry1 geo:isInGroup ?u .
?ctry1 geo:isInGroup ?cnt1 .
?ctry1 geo:isInGroup geo:World .
?ctry1 rdf:type geo:self_governing .
?ctry1 geo:hasBorderWith ?ctry2 .
?ctry2 geo:nameOfficialEN ?on2 .
?ctry2 geo:isInGroup ?cnt2 .
?ctry2 geo:isInGroup geo:World .
?ctry2 rdf:type geo:self_governing .
?ctry2 geo:hasBorderWith ?ctry1 .

}
}

B3:

SELECT ?p1 ?p2 ?p1n ?p2n ?loc WHERE {
GRAPH ?g {

?p1 fbase:people.place_lived.person ?p1n .
?p1 fbase:people.place_lived.location ?loc .
?p2 fbase:people.place_lived.person ?p2n .
?p2 fbase:people.place_lived.location ?loc .
?loc fbase:location.location.containedby fbase:en.iraq .

}
}

B4:

SELECT ?s ?x ?y ?z ?w ?t WHERE {
GRAPH ?g {

?s fbase:location.location.events ?x .
?s fbase:location.location.geolocation ?y .
?s fbase:location.location.people_born_here ?z .
?s fbase:location.location.people_born_here ?w .
?s fbase:location.location.containedby ?t .

}
}
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B5:

SELECT ?fperf ?actor ?film ?name ?rel ?lang ?gen WHERE {
GRAPH ?g {

?fperf fbase:film.performance.actor ?actor .
?fperf fbase:film.performance.film ?film .
?film fbase:type.object.name ?name .
?film fbase:film.film.initial_release_date ?rel .
?film fbase:film.film.language ?lang .
?film fbase:film.film.genre ?gen .

}
}

B6:

SELECT ?fperf ?actor ?film ?name ?rel ?lang ?gen ?star WHERE {
GRAPH ?g {

?fperf fbase:film.performance.actor ?actor .
?fperf fbase:film.performance.film ?film .
?film fbase:type.object.name ?name .
?film fbase:film.film.initial_release_date ?rel .
?film fbase:film.film.language ?lang .
?film fbase:film.film.genre ?gen .
?film fbase:film.film.starring ?star .

}
}

B7:

SELECT ?fperf ?actor ?film ?name ?rel WHERE {
GRAPH ?g {

?fperf fbase:film.performance.actor ?actor .
?fperf fbase:film.performance.film ?film .
?film fbase:type.object.name ?name .
?film fbase:film.film.initial_release_date ?rel .

}
}

B8:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE {
GRAPH ?g {

?var6 a <http://dbpedia.org/ontology/PopulatedPlace> .
?var6 <http://dbpedia.org/ontology/abstract> ?var1 .
?var6 rdfs:label ?var2 .
?var6 geo:lat ?var3 .
?var6 geo:long ?var4 .
{

?var6 rdfs:label "Brunei"@en .
}
UNION
{

?var5 <http://dbpedia.org/property/redirect> ?var6 .
?var5 rdfs:label "Brunei"@en .

}
OPTIONAL { ?var6 foaf:depiction ?var8 }
OPTIONAL { ?var6 foaf:homepage ?var10 }
OPTIONAL { ?var6 <http://dbpedia.org/ontology/populationTotal> ?var12 }
OPTIONAL { ?var6 <http://dbpedia.org/ontology/thumbnail> ?var14 }
}

}



18 A. Katib et al. / Web Semantics: Science, Services and Agents on the World Wide Web ( ) –

B9:
PREFIX res: <http://dbpedia.org/resource/>
PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?city ?area ?code ?zone ?abstract ?postal ?popu ?g
WHERE {
GRAPH ?g {

?city onto:country res:United_States .
?city onto:postalCode ?postal .
{ ?city onto:areaLand ?area .
?city onto:areaCode ?code . }
UNION
{ ?city onto:timeZone ?zone .
?city onto:abstract ?abstract . }
OPTIONAL { ?city onto:populationTotal ?popu . }
}

}

B10:
PREFIX resource: <http://dbpedia.org/resource/>
PREFIX ontology: <http://dbpedia.org/ontology/>

SELECT ?city ?area ?code ?zone ?abstract ?postal ?water ?popu ?g
WHERE {

GRAPH ?g {
{ ?city ontology:areaLand ?area .

?city ontology:areaCode ?code . }
UNION
{ ?city ontology:timeZone ?zone .

?city ontology:abstract ?abstract . }
?city ontology:country resource:United_States .
?city ontology:postalCode ?postal .
OPTIONAL { ?city ontology:areaWater ?water . }
OPTIONAL { ?city ontology:populationTotal ?popu . }

}
}

B11:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT *
WHERE {

GRAPH ?g {
?var5 dbpedia-owl:thumbnail ?var4 .
?var5 rdf:type dbpedia-owl:Person .
?var5 rdfs:label ?var .
?var5 foaf:page ?var8 .
OPTIONAL { ?var5 foaf:homepage ?var10 . }

}
}

LUBM queries

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

L1:
SELECT ?p1 ?uni ?n1 ?e1 ?ph1 ?res1 ?c ?pub1 ?pub2 ?p2 ?n2 ?e2 ?ph2 ?res2 WHERE {

GRAPH ?g {
?p1 rdf:type ub:FullProfessor .
?p1 ub:undergraduateDegreeFrom <http://www.University584.edu> .
?p1 ub:mastersDegreeFrom <http://www.University584.edu> .
?p1 ub:doctoralDegreeFrom <http://www.University429.edu> .
?p1 ub:worksFor ?uni .
?p1 ub:name ?n1 .
?p1 ub:emailAddress ?e1 .
?p1 ub:telephone ?ph1 .
?p1 ub:researchInterest ?res1 .
?p1 ub:teacherOf ?c .
?p2 rdf:type ub:AssociateProfessor .
?p2 ub:undergraduateDegreeFrom <http://www.University584.edu> .
?p2 ub:mastersDegreeFrom <http://www.University584.edu> .
?p2 ub:doctoralDegreeFrom <http://www.University9999.edu> .
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?p2 ub:worksFor ?uni .
?p2 ub:name ?n2 .
?p2 ub:emailAddress ?e2 .
?p2 ub:telephone ?ph2 .
?p2 ub:researchInterest ?res2 .
?p2 ub:teacherOf ?course2 .
?pub1 ub:publicationAuthor ?p1 .
?pub2 ub:publicationAuthor ?p2 .

}
}

L2:

SELECT ?p ?c ?e ?ph ?res ?uguni ?msuni ?phduni ?s1n ?s2n ?s1 ?s2 ?pub WHERE {
GRAPH ?g {

?s1 ub:advisor ? .
?s1 ub:name ?s1n .
?s1 rdf:type ub:UndergraduateStudent .
?s2 ub:advisor ?p .
?s2 ub:name ?s2n .
?s2 rdf:type ub:GraduateStudent .
?p rdf:type ub:FullProfessor .
?p ub:name "FullProfessor7" .
?p ub:teacherOf ?c .
?p ub:undergraduateDegreeFrom ?uguni .
?p ub:mastersDegreeFrom ?msuni .
?p ub:doctoralDegreeFrom ?phduni .
?p ub:worksFor <http://www.Department17.University1001.edu> .
?p ub:emailAddress ?e .
?p ub:telephone ?ph .
?p ub:researchInterest ?res .
?pub ub:publicationAuthor ?p .
?pub ub:publicationAuthor ?s2 .

}
}

L3:

SELECT *
WHERE {
graph ?g {
?student1 ub:undergraduateDegreeFrom ?undergradUni .
?student1 ub:memberOf ?dept .
?student2 ub:undergraduateDegreeFrom ?undergradUni .
?student1 ub:advisor ?professor .
?publication ub:publicationAuthor ?student1 .
?publication ub:publicationAuthor ?student2 .
?publication ub:publicationAuthor ?professor.
?professor ub:name ‘‘AssociateProfessor5" .
?professor ub:telephone ?tpnu .
?professor ub:emailAddress ?emAddr .
?professor ub:undergraduateDegreeFrom ?bsdg .
?professor ub:teacherOf ?course .
?professor ub:worksFor ?dept .
?professor ub:researchInterest ?researchInt .
?professor ub:mastersDegreeFrom ?msdg .
?professor ub:doctoralDegreeFrom ?phddg .
?student1 rdf:type ub:GraduateStudent .
?dept rdf:type ub:Department .
?dept ub:subOrganizationOf <http://www.University10.edu> .
?student2 rdf:type ub:GraduateStudent .
?undergradUni rdf:type ub:University .
?publication rdf:type ub:Publication .
?student2 ub:memberOf ?dept .
}
}

L4:

SELECT ?x ?y ?z WHERE {
GRAPH ?g {

?x rdf:type ub:UndergraduateStudent .
?y rdf:type ub:University .
?z rdf:type ub:Department .
?x ub:memberOf ?z .
?z ub:subOrganizationOf ?y .
?x ub:undergraduateDegreeFrom <http://www.University0.edu> .

}
}
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L5:

SELECT ?x ?y WHERE {
GRAPH ?g {

?x rdf:type ub:FullProfessor .
?y rdf:type ub:Department .
?x ub:worksFor ?y .
?y ub:subOrganizationOf <http://www.University0.edu> .

}
}

L6:

SELECT ?x ?y ?z WHERE {
GRAPH ?g {

?x rdf:type ub:UndergraduateStudent .
?y rdf:type ub:Department .
?x ub:memberOf ?y .
?y ub:subOrganizationOf <http://www.University0.edu> .
?x ub:emailAddress ?z .

}
}

L7:

SELECT ?x ?y ?z WHERE {
GRAPH ?g {

?y ub:teacherOf ?z .
?y rdf:type ub:FullProfessor .
?z rdf:type ub:Course .
?x ub:advisor ?y .
?x rdf:type ub:UndergraduateStudent .
?x ub:takesCourse ?z .

}
}

L8:

SELECT ?x ?y ?z WHERE {
GRAPH ?g {

?x rdf:type ub:GraduateStudent .
?y rdf:type ub:AssistantProfessor .
?z rdf:type ub:GraduateCourse .
?x ub:advisor ?y .
?y ub:teacherOf ?z .
?x ub:takesCourse ?z .

}
}

L9:

SELECT ?x WHERE {
GRAPH ?g {

?x rdf:type ub:Course .
?x ub:name ?y .

}
}

L10:

SELECT ?x WHERE {
GRAPH ?g {

?x rdf:type ub:GraduateStudent .
}

}

L11:

SELECT ?x WHERE {
GRAPH ?g {

?x rdf:type ub:UndergraduateStudent .
}

}
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Appendix B. Visualization of large BGPs

Fig. B.10 shows the visual representation of the large BGPs in
queries B1–B2. Fig. B.11 shows the visual representation of the
large BGPs in queries L1–L3.
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