
A Method for Scalable First-Order Rule Learning
on Twitter Data

Monica Senapati
University of Missouri-Kansas City

msenapati@mail.umkc.edu

Laurent Njilla
Air Force Research Lab (AFRL)

laurent.njilla@us.af.mil

Praveen Rao
University of Missouri-Kansas City

raopr@umkc.edu

Abstract—We propose a method for scalable first-order rule
learning on large-scale Twitter data. By learning rules, probabilis-
tic inference queries can be executed to reason over the data to
ascertain its veracity. Our method employs a divide-and-conquer

approach, graph-based modeling, and data parallel processing
during rule learning using a commodity cluster to overcome the
problem of slow structure learning on large-scale Twitter data.
The first-order predicates (constructed on the posts) are first
partitioned in a balanced way by pivoting around users to reduce
the chance of missing relevant rules. By constructing a weighted
graph and applying graph partitioning, balanced partitions of
the ground predicates can be created. Each partition is then
processed using an existing structure learning approach to get the
set of rules for that partition. We report a preliminary evaluation
of our method to show that it offers a promising solution for
scalable first-order rule learning on Twitter data.

I. INTRODUCTION

Social media sites have been widely used for political cam-
paigns, marketing and advertising, sharing breaking news, and
during a catastrophic event like an earthquake or a tsunami.
Unfortunately, they have been exploited by adversaries to
launch cyberattacks against users and their organizations. More
recently, the spread of fake news has become a serious problem
for Internet users [1]. Thus, ascertaining the veracity (or
trustworthiness) of social media posts is a critical challenge
for enterprises and users.

In statistical relational learning, a Markov logic network
(MLN) [10] is regarded as one of the most flexible repre-
sentations as it combines first-order logic and probabilistic
graphical models. First-order logic enables the complexity of
the data to be modeled; and probability allows expressing
the uncertainty in the data. An MLN is a knowledge base
(KB) and can model the complex, diverse nature of Twitter
posts (a.k.a. tweets) containing 100+ attributes. Once the KB
is learned, which includes the first-order rules (or formulas)
and their weights, probabilistic inference can be conducted
on the KB to reason about the content in the posts and
users’ behavior. For example, one can compute the marginal
probability of a URL being malicious, a tweet being sensitive,
a user account being an adversary or social bot [11], and so
on. One approach is to use handcrafted first-order rules based
on prior observations/knowledge [9]. Alternatively, the first-

DISTRIBUTION A. Approved for public release: Distribution unlimited.
Case Number 88ABW-2019-0278; Dated 24 Jan 2019

order rules can be learned over the data, which is appealing
when the significance of a rule changes over time.

Although a number of methods have been proposed for
MLN structure learning to learn first-order rules [4]–[7],
[12], they have been tested only on small datasets using a
single machine. Ontological pathfinding [2] is a recent work
on scalable first-order rule mining using cluster computing.
However, it learns only Horn clauses [2], whereas MLNs use
general first-order rules, which are more expressive than Horn
clauses. Thus, our goal is to scale MLN structure learning on
large-scale Twitter data by (a) leveraging cluster computing
and (b) exploiting the capability of existing structure learning
tools [7] for learning rules on small datasets.

We propose a novel method called SRLearn (Scalable Rule
Learning) to scale the learning of relevant first-order rules
over a large number of tweets using a commodity cluster.
The salient features of SRLearn are as follows: (a) a divide-
and-conquer approach to rule learning by first employing
graph-based modeling of ground predicates and users, and
applying graph partitioning to create partitions of ground
predicates to minimize the chance of missing interesting rules;
(b) exploiting data parallelism at different stages during rule
learning using a commodity cluster; and (c) leveraging the
power of Alchemy’s structure learning [7] on small datasets.
We report a preliminary evaluation of SRLearn on Twitter
data to show that it is a better solution than running Alchemy
in a centralized setting.

II. BACKGROUND

A. Twitter Data

Tweets are short messages posted by users on Twitter. Each
tweet collected from Twitter is assigned a unique ID; each
user account is also assigned a unique ID. There are attributes
whose values embed the actual text of a tweet, the URLs
contained in a tweet, hashtags used in a tweet, users mentioned
in a tweet, who retweeted a tweet, and so on. There are
attributes that provide counts about the number of friends
of a user, the number of followers of a user, the number of
tweets liked/favorited by a user (i.e., favourites count), and
the number of posts of a user (i.e., statuses count). Note that
a tweet does not contain the list of friends or followers of
a user. Nor does it contain information about hashtags that
are trending. These pieces of information, however, can be
obtained using Twitter APIs.

Copyright held by IEEE

TABLE I
A SET OF FIRST-ORDER PREDICATES ON TWEETS

tweeted(userID, tweetID) containsLink(tweetID, link)
containsHashtag(tweetID, hashtag) malicious(link)

trending(hashtag) verified(userID)
attacker(userID) mentions(tweetID, userID)

retweeted(userID, tweetID) isPossiblySensitive(tweetID)
retweetCount(tweetID, count) friend(userID1, userID2)

isFollowedBy(userID1, userID2) friendsCount(userID, count)
followersCount(userID, count) statusesCount(userID, count)
favouritesCount(userID, count) isBot(userID)

Table I shows a list of possible first-order predicates on
tweets. (Other predicates can be defined.) The variables in
the predicates are (a) tweetID denoting the ID of a tweet; (b)
userID denoting the ID of a user; (c) link denoting a URL;
(d) hashtag denoting a topic/word prefixed by the ‘#’ symbol;
and (e) count denoting a non-negative integer.

B. Markov Logic Networks

Formally, an MLN is a KB defined by a set of pairs (F ,w),
where F is a first-order rule that denotes a constraint and w
is a real-valued weight of the rule. Higher the weight, more
likely is the constraint believed to be satisfied in a possible
world. A rule with a positive weight is more likely to be
satisfied in a possible world; a rule with a negative weight
is more likely to be unsatisfied. Two predicates that share at
least one common variable can appear in an MLN’s rule. For
instance, 8u verified(u)) !isBot(u) is a candidate rule
of size 2 on Twitter data that states every verified user u (as
determined by Twitter) is not a social bot. Thus, there are
many candidates rules to test during MLN structure learning.
A grounding of a rule (or predicate) is obtained by replacing
all its variables by constants resulting in a ground rule (or
ground predicate). Once the rules and weights are learned [10],
probabilistic inference queries can be posed.

III. OUR APPROACH

MLN structure learning [7] on a large number of ground
predicates is time consuming especially in a centralized set-
ting. To speed up and scale the learning of first-order rules on
large datasets, our method, SRLearn, employs a divide-and-
conquer approach, graph-based modeling of ground predicates
constructed on tweets and users’ actions, and data parallelism
at different stages during structure learning.

Fig. 1. Design of SRLearn

Fig. 2. An example of a ground predicate graph

Figure 1 shows the design of SRLearn, which operates
on a commodity cluster, wherein the input dataset containing
ground predicates is stored in the Hadoop Distributed File
System (HDFS). The first challenge is to group the ground
predicates by users. Essentially, we model the ground pred-
icates associated with a user as a ground predicate graph.
Suppose a user posted two tweets containing a link flagged as
malicious and a hashtag that is trending. Figure 2 shows an
example ground predicate graph constructed on 19 predicates.
These graphs form the building blocks for the next step to
generate the user-centric graph, which facilitates the divide-
and-conquer approach and serves three purposes. First, a
vertex of the user-centric graph denotes the entire ground
predicate graph of a user and therefore, provides a natural way
to cluster relevant ground predicates in the data. Its weight
is based on the number of ground predicates in the ground
predicate graph. Second, an edge in the user-centric graph
indicates social interaction between two users, and its weight
captures the extent of social interaction based on certain
ground predicates that are present in the dataset. Third, by
assigning weights to the vertices and edges of the user-centric
graph, we can formulate the task of finding the optimal way to
produce balanced partitions of ground predicates (for structure
learning) as a graph partitioning task on a weighted graph
by pivoting around the users. Another key advantage is that
we can reduce the chance of missing relevant rules that can
span across partitions during structure learning. As a result,
the time taken for rule learning can be significantly reduced
by operating on smaller sets of ground predicates (in parallel).

The key processing steps of SRLearn are described in
Algorithms 1, 2, and 3, which are explained next. Algorithm 1
shows the steps involved in grouping the ground predicates
for each user. To enable data parallelism, the MapReduce
paradigm is employed [3]. First, an associative array is gener-
ated on the input dataset containing (tweetID, userID) pairs,
and broadcast to all the nodes (Line 3). This is required for
associating ground predicates that do not contain userID as
a variable, to the right user. This is followed by the map
phase (Lines 5-6) and the reduce phase (Lines 7-8). In the map
phase, each block of ground predicates is processed by invok-
ing MapPredicates(·) (Lines 11-27). Those predicates whose
first argument is not of the type userID (e.g., malicious(l),
containsHashtag(t, h)) are processed specially in order to
associate them with the right user in the reduce phase
(Lines 15-24). The reduce phase invokes ReducePredicates(·)
and generates key-value pairs where userID is the key, and

the value is a group of predicates belonging to the ground
predicate graph of that user (Lines 28-34). At this stage, there
can be more than one key-value pair with the same key. So
a reduce-by-key operation is executed to group all the ground
predicates for a particular user into a key-value pair (Line 9).

Algorithm 1 Grouping the ground predicates by users
1: Let F denote the HDFS file containing ground predicates
2: Let G, H , and I denote distributed collections
3: Using map and reduce operations on F , construct an associate array A

containing key-value pairs (t, u), where t is tweetID and u is userID
4: Broadcast A to all workers on nodes

{/* Map phase */}
5: for each block B

i

of F in HDFS do
6: Invoke MapPredicates(B

i

)
{/* Reduce phase */}

7: for each (K,V) in G do
8: Invoke ReducePredicates(K,V)
9: Run a reduce-by-key operation to process H by grouping the tuples by

userID and store the result into I
10: return I

{/* Map function */}
11: begin func MapPredicates(block B)
12: for each ground predicate p in B do
13: if p is a predicate with userID u as the first parameter then
14: Output (u, p) to G
15: if p is of type malicious(link) or trending(hashtag) then
16: Output (p, “EXISTS”) to G
17: if p is of type containsLink(t, link)) then
18: Output (“malicious(link)”, t) to G
19: Find (t, u) in A; Output (u, p) to G
20: if p is of type containsHashtag(t, hashtag)) then
21: Output (“trending(hashtag)”, t) to G
22: Find (t, u) in A; Output (u, p) to G
23: if p is of type mentions(t, u’) or isPossiblySensitive(t) or retweet-

Count(t, c) then
24: Find (t, u) in A; Output (u, p) to G
25: if p is of type retweeted(u, t) and (t, u) exists in A then
26: Output (u, “retweetedBy(t, u)”) to G
27: end func

{/* Reduce function */}
28: begin func ReducePredicates(K,V)
29: if K is a userID then
30: Output(K,V) to H
31: else if any item in V = “EXISTS” then
32: for each item t0 6= “EXISTS” in V do
33: Find (t0, u) in A; Output(u,K) to H

34: end func

Algorithm 2 shows the steps involved in constructing the
user-centric graph. It has a map phase (Lines 3-4) and a reduce
phase (Lines 5-6). In the map phase, MapWts(·) is invoked
on each (K,V), where K is a userID and V denotes all the
ground predicates for that userID (Lines 9-23). First, the vertex
ID and its weight are output (Lines 10-11). (The vertex weight
is the number of predicates in V .) Next, the social interaction
between two users is determined based on the rules in Table II.
That is, we define an edge between two users u and u0 in the
graph if (a) u mentions u0 or vice-versa, (b) u has a friend
relationship with u0 or vice-versa, (c) u is followed by u0

or vice-versa, or (d) u retweets a tweet of u0 or vice-versa.
Each of the above conditions defines an edge with unit weight.
Partial edge weights are computed and output along with the
edge (Lines 12-22). The partial edge weights for the same
edge from different map operations are combined in the reduce

phase by ReduceWts(·) (Lines 24-30). The weighted graph is
then stored in HDFS (Line 7).

Algorithm 2 Constructing the user-centric graph
1: Let I denote the output of Algorithm 1
2: Let J and L denote distributed collections

{/* Map phase */}
3: for each (K,V) in I do
4: Invoke MapWts(K,V)

{/* Reduce phase */}
5: for each (K,V) in J do
6: Invoke ReduceWts(K,V)
7: Store L as a file to HDFS
8: return

{/* Map function */}
9: begin func MapWts(K,V)

10: Let c denote the no. of predicates in V excluding retweetedBy
11: Output (K, c) to J
12: edgeList ;
13: for each p in V do
14: if p is of type friend(u, u’) or isFollowedBy(u, u’) or mentions(t, u’)

or retweetedBy(t, u’) then
15: x min(u, u0); y max(u, u0)
16: Create edge (x, y)
17: if (x, y) 2 edgeList then
18: Increase edge weight w

x,y

by 1
19: else
20: Add (x, y) to edgeList with w

x,y

= 1
21: for each (x, y) in edgeList do
22: Output ((x, y), w

x,y

) as the edge to J
23: end func

{/* Reduce function */}
24: begin func ReduceWts(K,V)
25: if K is a userID then
26: Output (K,V) to L {/* weighted vertex */}
27: else
28: Let w denote the sum of all wt. values in V
29: Output (K,w) to L {/* weighted edge */}
30: end func

TABLE II
SOCIAL RELATIONSHIPS BETWEEN USERS

Condition Edge(u, u’)
tweeted(u, t) ^ mentions(t, u’) TRUE

tweeted(u’, t’) ^ mentions(t’, u) TRUE
friend(u, u’) _ friend(u’, u) TRUE

isFollowedBy(u, u’) _ isFollowedBy(u’, u) TRUE
tweeted(u, t) ^ retweeted(u’, t) TRUE
tweeted(u’, t) ^ retweeted(u, t) TRUE

Algorithm 3 shows the divide-and-conquer approach of
SRLearn. The user-centric graph is partitioned into some
number of partitions by minimizing the total weight of the
cut edges (Line 4). The intuition is to group predicates of
users that have high degree of social interaction, in the same
partition so that interesting rules can be discovered between
them. Alternatively, users with low degree of social interaction
can be placed in different partitions without missing interesting
rules spanning across partitions. The partitions are assigned to
different machines (e.g., round-robin assignment), and struc-
ture learning [7] is executed independently on each partition
to learn the rules (Lines 5-9).

IV. PRELIMINARY EVALUATION

For our implementation, we used Scala 2.11.8, Apache
Spark 2.3.11, and Apache Hadoop 2.7.62. We conducted the
1 http://spark.apache.org 2 http://hadoop.apache.org

Algorithm 3 Graph partitioning and rule learning in parallel
1: Let U denote the user-centric graph file output by Algorithm 2
2: Let m denote the number of required partitions
3: Let n denote the number of machines
4: Run graph partitioning (in parallel) on U to generate partitions

p1, . . . , pm of the ground predicates (in F) by minimizing the total
weight of the cut edges in U

5: Assign partitions in a round-robin fashion to the n machines
6: In parallel, invoke StructureLearning() on each node
7: Wait for all the nodes to finish
8: Let R denote the union of all the learned rules
9: return R

10: begin func StructureLearning()
11: for each partition p

i

on the node do
12: Run Alchemy’s structure learning algorithm [7] on p

i

13: end func

experiments on CloudLab3 by setting up a cluster of physical
nodes. Each node had a 10-core Intel processor with 64 GB
RAM and 480 GB SSD. We collected 20,000 tweets during
2016-2017 and created an input file with 22.4 million ground
predicates containing 17 unique predicates (except isBot())
as shown in Table I. The file size was 741 MB.

Fig. 3. Quality of graph partitioning

We first ran Alchemy’s structure learning approach [7] on
a single machine. Unfortunately, it was very slow even on a
small number of ground predicates. It ran for 138 hours on a
meager 15,417 ground predicates and eventually failed due to a
memory allocation error. This clearly underscores the problem
of MLN structure learning in a centralized setting.

Next, we present insights on SRLearn’s performance on
22.4 million ground predicates. We first ran SRLearn on
a 16-node cluster to produce 128 partitions of the ground
predicates. This required a total of 2 hours and 30 minutes.
For graph partitioning, we used KaHIP [8] and tested different
strategies that provide a tradeoff between partition quality
and time for different types of graphs. Figure 3 shows the
quality of partitioning in terms of the number of vertices
(i.e., users) of the user-centric graph per partition in sorted
order. Compared to the Eco, EcoStrong, and Strong settings
in KaHIP, StrongSocial produced the most balanced partitions.

Next, we ran Alchemy’s structure learning on each partition
to generate rules using a 32-node cluster. The 128 partitions
were distributed across 32 nodes. It took a total of 66 hours
and 33 minutes to run the structure learning on the partitions.
(Although a node had many cores, we ran Alchemy on the
partitions serially on the node.) Some of the learned rules
3 http://cloudlab.us

TABLE III
SOME RULES LEARNED BY SRLEARN

First-order rules (in clausal form)
friend(v0,v1) _ !verified(v0)
!mentions(v0,v1) _ !retweeted(v2,v3) _
!tweeted(v1,v3) _ !tweeted(v2,v0)
!containsHashtag(v0,v1) _ containsHashtag(v2,v1) _
!mentions(v0,v3) _ !mentions(v2,v3)

are shown in Table III. Thus, SRLearn provides a promising
solution to reduce the computational complexity of first-order
rule learning on large-scale Twitter data.

V. CONCLUSION AND FUTURE WORK

We presented SRLearn for scalable first-order rule learning
on Twitter data by employing a divide-and-conquer approach,
graph-based modeling of tweets and users’ actions, and data
parallelism. Our method can be adapted to other social media
sites by generating a different set of first-order predicates
based on the posts and users, and defining social interactions.
In the future, we plan generalize the algorithms for any type
of predicate and develop a method to combine the rules from
different partitions (e.g., by learning their weights on the
ground predicates) and evaluate their quality for inference.

ACKNOWLEDGMENTS

Praveen Rao would like to thank the support of AFRL’s Vis-
iting Faculty Research Program & Extension Grant Program.

REFERENCES

[1] H. Allcott and M. Gentzkow. Social media and fake news in the 2016
election. Journal of Economic Perspectives, 31(2):211–36, May 2017.

[2] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological
Pathfinding: Mining First-Order Knowledge from Large Knowledge
Bases. In Proc. of the 2016 SIGMOD Conference, pages 835–846, San
Francisco, California, USA, 2016.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. of the 6th Symposium on Operating Systems
Design and Implementation, San Francisco, CA, Dec. 2004.

[4] T. N. Huynh and R. J. Mooney. Online Structure Learning for Markov
Logic Networks. In Proceedings of the 2011 European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume
Part II, pages 81–96, Athens, Greece, 2011.

[5] H. Khosravi, O. Schulte, T. Man, X. Xu, and B. Bina. Structure
Learning for Markov Logic Networks with Many Descriptive Attributes.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, pages 487–493, Atlanta, Georgia, 2010.

[6] S. Kok and P. M. Domingos. Learning Markov Logic Network Structure
via Hypergraph Lifting. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 505–512, Montreal, 2009.

[7] S. Kok and P. M. Domingos. Learning Markov Logic Networks Using
Structural Motifs. In Proceedings of the 27th International Conference
on Machine Learning (ICML), pages 551–558, Haifa, Israel, 2010.

[8] H. Meyerhenke, P. Sanders, and C. Schulz. Parallel Graph Partitioning
for Complex Networks. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2017.

[9] P. Rao, A. Katib, C. Kamhoua, K. Kwiat, and L. Njilla. Probabilistic
Inference on Twitter Data to Discover Suspicious Users and Malicious
Content. In Proc. of the 2nd IEEE Intl. Symp. on Security and Privacy
in Social Networks and Big Data, pages 407–414, Nadi, Fiji, 2016.

[10] M. Richardson and P. Domingos. Markov Logic Networks. Machine
Learning, 62(1-2):107–136, Feb. 2006.

[11] C. Shao, G. L. Ciampaglia, O. Varol, A. Flammini, and F. Menczer. The
Spread of Fake News by Social Bots. CoRR, abs/1707.07592, 2017.

[12] Z. Sun, Y. Zhao, Z. Wei, W. Zhang, and J. Wang. Scalable Learning
and Inference in Markov Logic Networks. Int. J. Approx. Reasoning,
82(C):39–55, Mar. 2017.

