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Abstract—While the power of social media on the Internet

is undeniable, it has become a major weapon for launching

cyberattacks against an organization and its people. Today,

there is a growing number of cyberattacks being launched

through social media such as posting of false content from

hacked accounts, posting malicious URLs to spread malware,

and others. In this paper, we present a simple and flexible unified

framework called SocialKB for modeling social media posts and

reasoning about them to ascertain their veracity, a first step

towards discovering emerging cyber threats. SocialKB is based

on Markov Logic Networks (MLNs), a popular representation in

statistical relational learning. It learns a knowledge base (KB) on

the social media posts and users’ behavior in a unified manner.

By conducting probabilistic inference on the KB, SocialKB can

identify suspicious users and malicious content. In this work, we

specifically focus on tweets posted by users on Twitter. Finally, we

report an evaluation of SocialKB on 20,000 tweets and discuss

our early inference results.

I. INTRODUCTION

The power of social media is undeniable: may it be in a
marketing or political campaign, sharing breaking news, or
during catastrophic events. Unfortunately, social media has
also become a major weapon for launching cyberattacks on
an organization and its people.1 By hacking into accounts
of (popular) users, hackers can post false information, which
can go viral and lead to economic damages and create havoc
among people. For instance, a false tweet posted about the
Syrian President’s death using a news agency’s Twitter feed
caused oil prices to spike.1 In 2015, it was reported that the
Twitter accounts of U.S. military officials were hacked by
those claiming to support the Islamic State.2 Later that year, it
was reported that Iranian hackers took control of social media
accounts of U.S. State Department officials.3 Another major
threat on social media is the spread of malware through social
media posts by tricking innocent users to click unsuspecting
links [27]. Due to these reasons, organizations are developing
policies for usage of social media and investing a lot of money
and resources to secure their infrastructure and prevent such
attacks.
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1https://www.cisco.com/web/offer/gist ty2 asset/Cisco 2013 ASR.pdf
2www.cnbc.com/2015/01/12/us-central-command-twitter-hacked.html
3www.nytimes.com/2015/11/25/world/middleeast/

iran-hackers-cyberespionage-state-department-social-media.html

Social media datasets can be regarded as “big data” due
to their massive, complex, heterogeneous nature. Gartner re-
ported that by 2016, 25% of large global companies will
rely on big data analytics for cybersecurity and fraud.4 While
statistical models provide an elegant framework for gaining
knowledge from complex datasets [17], the volume, velocity,
variety, and veracity of big data demands a paradigm shift.
Several big data ecosystems have been developed to tackle
the volume, velocity, and variety of big data and gain
insights from data. The veracity (or trustworthiness) of big
data (e.g., social media content) is becoming more important
today [20, 1, 14]. To ascertain veracity of social media content,
we must consider both the content as well as users’ behavior.

In this paper, we present SocialKB, a simple and flexible
unified framework for modeling and reasoning about the
veracity of social media posts to discover suspicious users and
malicious content. SocialKB builds on concepts in statistical
relational learning for knowledge representation and reasoning
under uncertainty. It can be used to analyze both the behavior
of users and the nature of their posts to ultimately discover
potential cyberattacks on social media. The nature of cyber-
attacks on social media is quite complex: It can range from
posting of malicious URLs to spread malware, to posting of
misleading/false information to create chaos, to compromise
of innocent users’ accounts. SocialKB learns a KB over social
media data–to capture both the behavior of users and the nature
of their posts. The KB will contain entities, their relationships,
facts, and rules. Using the KB, one can efficiently reason about
the veracity of the social media posts and users’ behavior to
flag suspicious content/activity in a timely manner. To the best
of our knowledge, none of the previous efforts has leveraged
statistical relational learning techniques, specifically MLNs,
for discovering cyber threats on social media.

There are several technical challenges that arise in designing
a unified framework such as SocialKB for social media data.
The first challenge is to represent the complex and diverse
social media data in a principled manner. For example, a tweet
on Twitter is represented using 100+ attributes, and attribute
values can be missing and noisy. New attributes may appear
in tweets; some attributes may not appear in a tweet. Hashtags
(e.g., #baseball, #malware, #election2016) are used frequently

4www.gartner.com/doc/2651118
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by users in tweets to indicate specific topics or categories.
There are thousands of hashtags in use today; the popularity
of a hashtag changes over time. Some hashtags may become
trending/popular during a particular time period. The second
challenge is to construct a KB on millions of social media
posts in a scalable and efficient manner. The goal is to learn
the entities, facts, and rules from large number of posts. This
is a key challenge because popular social media sites have
millions of active users. For example, as of March 2016,
Twitter had 310 million active users and receives 400 million
tweets per day.5 The designed framework should be able to
grow the KB as new posts are produced. The third challenge
is to reason about the veracity of the posts by performing
fast probabilistic inference on the KB containing millions of
entities and facts. Thus, suspicious content/activities can be
flagged as soon as possible to discover emerging cyber threats.
SocialKB attempts to address some of the above challenges.

The rest of the paper is organized as follows. Section II
provides the background on MLNs and discusses related work
on social media data analysis. Section III presents the novel
design of our framework. Section IV reports an evaluation of
our framework on tweets collected from Twitter. Section V
provides some perspectives on how to extend our framework.
Finally, we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

A. Markov Logic Network
In statistical relational learning, a MLN [21] is regarded

as one of the most flexible representations as it combines
first-order logic and probabilistic graphical models. MLNs
are widely used in natural language processing [19], entity
resolution [15, 25], hypertext classification [3], and infor-
mation extraction [18] and retrieval. Formally, a MLN is a
KB defined by a set of pairs (F ,w), where F is a first-
order formula that denotes a constraint and w is a real-valued
weight of the formula. Higher the weight, more likely is
the constraint believed to be satisfied in the set of possible
worlds. A formula with infinite weight is a hard constraint.
Formulas can contradict. A world that violates a formula is less
probable but not impossible. However, a world that violates
a hard constraint has zero probability. Once the formulas
and weights are learned [24], probabilistic inference can be
performed on the MLN by posing maximum a posteriori
(MAP) and marginal inference queries. Efficient inferencing
techniques have been developed (e.g., lifted inference [9, 23])
including those that can operate on large KBs with millions of
entities and facts by leveraging the scalability and efficiency
of relational database systems and cluster computing (e.g.,
Tuffy [16], ProbKB [5]).

Example 1: Consider a KB on smokers and friends
with 3 formulas [21]: 8x Smoker(x) =) Cancer(x);
8x8y Friends(x, y) =) (Smoker(x) () Smoker(y));
and 8x Smoker(x) with weights 3.5, 1.0, and -1.0, respec-
tively. The first formula is a stronger constraint than the others

5https://en.wikipedia.org/wiki/Twitter

and is of higher importance in the set of possible worlds. The
third formula with -ve weight implies that a person is more
likely to be a non-smoker. Using probabilistic inference, one
can perform marginal inference queries on an entity or all
entities (e.g., Pr(Friends(Alice,Bob)), Pr(Cancer(x))) as
well as MAP queries (e.g., argmax

x

Pr(Cancer(x))).
A grounding of a formula (or predicate) is obtained by
replacing all its variables by constants. The obtained formula
(or predicate) is called a ground formula (or ground predicate).
Given a MLN, its ground Markov network is denoted by
(X,G), where X is the set of binary random variables and
G is the set of ground formulas. For each ground predicate,
there is one binary random variable in X . The set of possible
worlds X is the set of all possible assignments of truth values
to variables in X . The probability of a possible world is given
by Pr(X = x) =
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B. Analysis of Content and User Behavior on Social Media
Several researchers have developed methods for detecting

spam and propagation of malware on social media. Haber-
man et al. [8] was one of the early researchers to study the
social interactions of users on Twitter based on their followers
and followee counts. Lee et al. [11] proposed a honeypot-
based approach to detect spammers on social media sites such
as MySpace and Twitter. Stringhini et al. [26] studied the
problem of detecting spammers (e.g., single bots) and spam
campaigns on three different social media sites using ”honey-
profiles.”

Jin et al. [10] proposed a scalable spam detection system
using data mining techniques. They considered both image
and text content as well as social network features. Wang et
al. [28] analyzed the misuse of shortened URLs on Twitter
and classified them into spam and non-spam based on the click
traffic data. Yang et al. [31] analyzed Twitter accounts and
inner social relationships of users to detect criminal accounts.
They concluded that criminal accounts tend to be socially
connected forming a small-world network. Yan et al. [30]
analyzed the social structure, click probability, and user activ-
ity patterns of an online social network called BrightKite to
understand the characteristics of malware propagation.

Ghosh et al. [6] studied the problem of link farming on
Twitter, wherein spammers attempt to acquire a large number
of followers. They proposed methods to dissuade users from
connecting to other users to increase their influence in a
social network. Sanzgiri et al. [22] developed and studied
three different attack models to analyze the spread of mal-
ware on Twitter. They showed that even with low degree of
connectivity with users and low probability of users clicking
the posted links, an attacker can infect several users. Lee et
al. [12] developed a near-real time detection for suspicious
URLs on Twitter. They identified the correlation of URL
redirect chains in the tweets using frequently shared URLs



Fig. 1. The architecture of SocialKB

and eventually, training a classifier to detect suspicious URLs.
Recently, Burnap et al. [2] developed a classification system
using machine learning to detect malicious URLs soon after
the links are clicked.

Researchers have also developed techniques to assess the
veracity of social media content. Qazvinian et al. [20] studied
the problem of rumor detection in microblogs using statistical
methods. They used different kinds of features (e.g., content-
based, network-based) to correctly classify tweets that con-
tain misinformation. Bodnar et al. [1] developed a veracity
assessment model on users’ social network profiles using
natural language processing and machine learning techniques
to classify information and misinformation about events on
Twitter. Lukasik [14] studied the problem of classifying tweet
level judgments of rumors on Twitter using supervised learning
such as multi-task learning.

Unlike prior work, our goal is to develop a unified frame-
work for modeling and reasoning about the veracity of social
media posts to discover suspicious content/activity early on.
Our key idea, which is explained in detail in the next section,
is to leverage MLNs to construct a KB over social media
content – to analyze both the behavior of users and the nature
of their posts within the same framework – and reason over
the constructed KB via probabilistic inference.

III. OUR FRAMEWORK

In this section, we present SocialKB, a unified framework
for modeling and reasoning about the veracity of social media
posts. In addition, we discuss how we tackle some of the
technical challenges presented in Section I.

A. Overview of SocialKB

The overall architecture of SocialKB is shown in Fig-
ure 1. A domain expert/user defines the input KB containing
predicates and first-order formulas over social media content.
Once the predicates are known, we automatically generate the
evidence dataset, which is a set of ground predicates observed
by combining social media content with external data sources.
An example of an external data source is URLBlacklist.com6,
which provides a categorization of URLs and domains (e.g.,

6http://urlblacklist.com

whitelist, spyware, virus infected, adult, violence). The current
version of SocialKB is built using Tuffy [16], which leverages
a relational database system to perform weight learning and
probabilistic inference efficiently. SocialKB learns the weights
of the formulas in the KB on the evidence dataset containing
millions of entities and ground predicates using Tuffy. (It is
also possible for SocialKB to discover new rules from the
KB using ProbKB [5].) When an end-user poses inference
queries such as MAP and marginal inference queries, So-
cialKB performs probabilistic inference (again using Tuffy)
on the learned MLN and outputs the ground predicates that
are satisfied/true. Essentially, an end-user can use SocialKB
to identify suspicious users, malicious URLs, sensitive tweets,
and so on. The ultimate goal of SocialKB is to enable end-
users to reason about the veracity of the social media posts to
flag suspicious content/activity early on.

B. Modeling Tweets using a KB

In this work, we focus on social media content posted by
users on Twitter. Using public APIs provided by Twitter, we
can collect a large number of public tweets as well as other
information such as trending hashtags, followers of users,
friends of users, etc. We begin by discussing how we model
tweets using a KB in a principled manner.

1) Attributes and Content in a Tweet: Tweets are rich in
information and diverse in the sense that they may contain
100+ attributes, and new attributes may appear over time.
Each tweet is assigned a unique ID; each user account is also
assigned a unique ID. In subsequent discussions, we simply
say “a user” to mean “a user account.” There are attributes
whose values embed the actual text of a tweet, the URLs
contained in a tweet, hashtags used in a tweet, and so on. There
are attributes that provide counts about the friends, followers,
and statuses (i.e., number of posts) of a user. Note that a tweet
does not contain the list of friends/followers of a user. Nor does
it contain information about trending hashtags. These pieces
of information, however, can be obtained using Twitter APIs.7

2) Predicates in the KB: Due on the richness of information
in tweets and complex relationships between entities in them,
we define a set of different types of predicates in the KB. A
predicate can make a closed-world assumption (CWA) or an
open-world assumption (OWA). CWA assumes that what is
not known to be true must be false. On the other hand, OWA
assumes that what is not known may or may not be true.

Figure 2(a) shows the first set of predicates based on CWA.
The predicate tweeted(userID,tweetID) states whether a user
posted a particular tweet or not; containsLink(tweetID,link)
states whether a tweet contains a particular URL or not;
containsHashtag(tweetID,hashtag) states whether a tweet con-
tains a particular hashtag or not; mentions(tweetID,userID)
states whether a particular user is mentioned in a tweet
(using the @ symbol) or not; retweeted(userID,tweetID) states
whether a user retweeted a particular tweet or not; finally,
verified(userID) states whether a user has been verified or

7https://dev.twitter.com/rest/public



Fig. 2. Set of predicates in the KB based on CWA (denoted by *) and OWA

*tweeted(userID,tweetID)
*containsLink(tweetID,link)
*mentions(tweetID,userID)
*retweeted(userID,tweetID)
*containsHashtag(tweetID,hashtag)
*verified(userID)

malicious(link)
friend(userID1,userID2)
trending(hashtag)
attacker(userID)
isFollowedBy(userID1,userID2)
isPossiblySensitive(tweetID)

*friendsCount(userID,count)
*followersCount(userID,count)
*statusesCount(userID,count)
*retweetCount(tweetID,count)
*favouritesCount(userID,count)

*tweetedT(userID,tweetID,t)
trendingT(hashtag,t)
*followersCountT(userID,count,t)
*friendsCountT(userID,count,t)

(a) (b) (c) (d)

not. Twitter independently verifies user accounts that are of
public interest in domains such as government, fashion, music,
politics, sports, etc.

Figure 2(b) shows the next set of predicates based on
OWA. The predicate malicious(link) states whether a URL
is malicious or not; friend(userID1,userID2) states whether
a user denoted by userID1 has a friend denoted by userID2
or not. Twitter defines a friend as someone who a user
is following. The predicate trending(hashtag) indicates if a
hashtag is trending or not; attacker(userID) indicates whether
a user is a suspicious user or not; isFollowedBy(userID1,
userID2) indicates whether a user denoted by userID1 is
followed by another user denoted by userID2 or not; and
finally, isPossiblySensitive(tweetID) indicates whether a tweet
is possibly sensitive or not. Twitter flags a tweet as possibly
sensitive based on users’ feedback.

To model the count information in a tweet, we define a set
of predicates as shown in Figure 2(c). These predicates model
the friends count/followers count/statuses count of a user, the
retweet count of a tweet, and the number of tweets a user has
“liked.” These predicates are based on a CWA. For instance,
if a user denoted by userID has a friend count of 100, then
friendsCount(userID,count) is true only when count equals 100
and false for all other values of count.

The predicates described thus far do not contain temporal
information. One interesting aspect of using a MLN to model
tweets is that we can define predicates with temporal variables.
These predicates are shown in Figure 2(d). The predicate
tweetedT(userID, tweetID, t) indicates whether a user posted a
particular tweet at a particular time or not; trendingT(hashtag,
t) indicates whether a hashtag is trending at a particular time
or not; followersCountT(userID, count, t) indicates whether a
user has a particular followers count at a particular time or not;
and finally, friendsCount(userID, count, t) indicates whether
a user has a particular friends count at a particular time or
not. These predicates specify temporal constraints on users’
behavior on social media.

3) First-Order Formulas in the KB: At the core of So-
cialKB is a set of constraints/first-order formulas defined on
the predicates. In the current version of SocialKB, these
formulas were constructed based on the findings in published
literature [31, 28, 22, 2], observing our personal account
activities on Twitter, and through intuitive reasoning. These
formulas can contradict each other. Each formula will be
assigned a weight, which can be learned over a training
dataset. A world that violates a formula is less probable but

Fig. 3. First set of first-order formulas in the KB

f1: tweeted(userID1,tweetID) ^ mentions(tweetID,userID2)
=) friend(userID1,userID2)
f2: retweeted(userID1,tweetID) ^ tweeted(userID2,tweetID)
=) friend(userID1,userID2)
f3: tweeted(userID,tweetID) ^
containsHashtag(tweetID,hashtag) ^ attacker(userID) =)
trending(hashtag)
f4: isFollowedBy(userID1,userID2) ^ verified(userID2) =)
verified(userID1)

Fig. 4. Second set of first-order formulas in the KB

f5: verified(userID) =) !attacker(userID)
f6: verified(userID1) ^ friend(userID1,userID2) ^
isFollowedBy(userID1,userID2) =) !attacker(userID2)
f7: tweeted(userID,tweetID) ^ containsLink(tweetID,link) ^
malicious(link) =) attacker(userID)
f8: attacker(userID1) ^ friend(userID1,userID2) ^
isFollowedBy(userID1,userID2) =) attacker(userID2)
f9: !attacker(userID1) ^ tweeted(userID1,tweetID) ^
mentions(tweetID,userID2) =) !attacker(userID2)
f10: tweeted(userID,tweetID) ^ isPossiblySensitive(tweetID)
=) attacker(userID)

not impossible. A formula with a +ve weight is more likely
to be true in the set of possible worlds; a formula with a -ve
weight is less likely to be true. A world that violates a hard
constraint (assigned the weight 1) has zero probability.

Next, we introduce the first-order formulas in SocialKB.
The existential quantifier 9 on each variable in a formula is
implied. The first set of formulas shown in Figure 3 infers
friendship relations, trending hashtags, and verified users.
Formula f1 states that if a user mentions another user in his/her
tweet, then this implies that the mentioned user is a friend
of the user. Formula f2 states that if a user retweets a tweet
of another user, then the friend relationship between the two
users is implied. Formula f3 states that if a user posted a
hashtag and is an attacker/suspicious user, then this implies
that the hashtag is trending as adversaries are more likely to
target trending hashtags. Formula f4 states that if a user is
followed by a verified user, then this implies that the user is
also verified/trustworthy.

The second set of formulas shown in Figure 4 infers whether
a user is an attacker/suspicious user or not. Formula f5 states
that if a user is verified, then he/she is not an attacker; formula
f6 states that a friend of a verified user is not an attacker;
formula f7 states that a user who posted a tweet containing a



Fig. 5. Third set of first-order formulas in the KB

f11: containsLink(tweetID,link) ^ [contains(link,�)] =)
!malicious(link) // hard constraint with wt. 1
f12: containsLink(tweetID,link) ^ isPossiblySensitive(tweetID)
=) malicious(link)
f13: attacker(userID) ^ tweeted(userID,tweetID) ^
containsLink(tweetID,link) =) malicious(link)
f14: containsLink(tweetID,link) ^ malicious(link) =)
isPossiblySensitive(tweetID)
f15: attacker(userID) ^ tweeted(userID,tweetID) =)
isPossiblySensitive(tweetID)

Fig. 6. Fourth set of first-order formulas on predicates denoting counts

f16: !verified(user) ^ followersCount(user,count1) ^
friendsCount(user, count2) ^ [count1 != 0 AND count2/count1
> m] =) attacker(user)
f17: !verified(user) ^ statusesCount(user,count1) ^
friendsCount(user,count2) ^ [count1 != 0 AND count2/count1
> m] =) attacker(user)
f18: !verified(user) ^ statusesCount(user,count1) ^
followersCount(user,count2) ^ [count1 != 0 AND
count2/count1 > m] =) attacker(user)
f19: !verified(user) ^ statusesCount(user,count1) ^
favouritesCount(user,count2) ^ [count1 != 0 AND
count2/count1 > m] =) attacker(user)

malicious link is an attacker; formula f8 states that a friend of
an attacker is also an attacker; formula f9 states that if a user,
who is not an attacker, mentions another user in his/her tweet,
then the other user is not an attacker; and finally, formula f10
states that if a user’s tweet is known to be possibly sensitive,
then he/she is an attacker.

The third set of formulas shown in Figure 5 infers whether
a link is malicious or not and whether a tweet is possibly
sensitive or not. Formula f11 states that a URL containing a
particular prefix � is not malicious. We define this formula
as a hard constraint. The prefix can be https://t.co/, which
indicates the use of Twitter’s URL shortening service. Or
it could denote trusted domains such as https://twitter.com,
https://www.instagram, http://pinterest.com, etc. Formula f12
states that a URL contained in a possibly sensitive tweet is
malicious; formula f13 states that a URL in a tweet posted
by an attacker is malicious; formula f14 states that a tweet
containing a malicious URL is possibly sensitive; and finally,
formula f15 states that a tweet of an attacker is possibly
sensitive.

The fourth set of formulas shown in Figure 6 infers attackers
based on the counts of certain attributes in the tweets. In these
formulas, m denotes a positive integer constant. Formula f16
states that if a non-verified user has a very large number of
users he/she is following compared to the number of users
following him/her, then the user is an attacker. Formulas f17,
f18, and f19 state that if a non-verified user is not active on
Twitter (based on the number of posts) but has a large number
of friends/followers or has liked a large number of tweets,
then the user is an attacker. Note that when a user’s tweet
is liked by someone, then a notification is sent to the user.

Fig. 7. Fifth set of first-order formulas on predicates with temporal variables

f20: friendsCountT(user,count1,t1) ^
friendsCountT(user,count2,t2) ^ [t1 - t2 <= ⌧ AND count1 !=
0 AND count2/count1 > m] =) attacker(user)
f21: trendingT(hashtag,t1) ^ tweetedT(user,tweet,t2) ^
containsHashtag(tweet,hashtag) ^ containsLink(tweet,link) ^
attacker(user) ^ [t1 < t2] =) malicious(link)
f22: trendingT(hashtag,t1) ^ tweetedT(user1,tweet,t2) ^
mentions(tweet,user2) ^ !isFollowedBy(user2,user1) ^ [t1 <
t2] =) attacker(user1)
f23: trendingT(hashtag,t1) ^ tweetedT(user1,tweet,t2) ^
mentions(tweet,user2) ^ !friend(user2,user1) ^ [t1 < t2] =)
attacker(user1)

Thus, a suspicious user can drawn the attention of other users
to himself/herself by randomly liking their tweets. Similarly,
a user can mention any other user in his/her tweet to seek
attention.

The last set of formulas in the KB is defined over predicates
with temporal variables. (See Figure 7.) These formulas are
powerful to model a sequence of activities, which can be
exploited by adversaries to launch cyberattacks. Formula f20
states that if the friends count of a user (i.e., the number of
users being followed by the user) increases substantially during
a predefined time interval ⌧ , then the user is a suspicious user
as he/she is trying to increase their social influence. Formula
f21 states that if a hashtag is trending at a point in time, and an
attacker posts a tweet containing that hashtag a later time, and
if the tweet contains a URL, then it is implied to be malicious.
This constraint enables us to capture the actions of an attacker
who is tracking trending hashtags to post malicious URLs to
maximize the scope of an attack. Formulas f22 and f23 state
that if a hashtag is trending at a point in time, and a user posts
a tweet containing that hashtag at a later time, and mentions
another user who he/she is not following or is not friends with,
then the user is an attacker. This constraint allows us to model
attackers who can mention other users in their posts randomly
just to have malicious content sent to those innocent users.

We would like reiterate that some of the formulas in the KB
can be thought of as untested hypotheses. Their true effect on
the results of probabilistic inference will depend on their actual
weights, which can be learned from the evidence dataset.

IV. EVALUATION

In this section, we present an evaluation of SocialKB on
tweets collected from Twitter. We report early results to show
that SocialKB holds promise in discovering suspicious users
and malicious content posted on social media.

A. Software, implementation, and hardware setup

We collected tweets using Apache Spark’s stream pro-
cessing APIs8 and Twitter4J9. We downloaded the URL and
domain datasets published by http://URLBlacklist.com. This

8http://spark.apache.org/docs/latest/streaming-programming-guide.html
9http://twitter4j.org



TABLE I
EVIDENCE DATASET: FREQUENCY & TYPE OF GROUND PREDICATES

Predicate CWA Count
tweeted(userID,tweetID) Yes 27,902

containsLink(tweetID,link) Yes 5,049
containsHashtag(tweetID,hashtag) Yes 6,356

mentions(tweetID,userID) Yes 15,891
retweeted(userID,tweetID) Yes 8,530

verified(userID) Yes 64
friendsCount(userID,count) Yes 19,623

retweetCount(tweetID,count) Yes 8,363
followersCount(userID,count) Yes 19,629

statusesCount(userID,count) Yes 19,931
favouritesCount(userID,count) Yes 0

tweetedT(userID,tweetID,t) Yes 0
followersCountT(userID,count,t) Yes 0

friendsCountT(userID,count,t) Yes 0
malicious(link) No 21

friend(userID1,userID2) No 157,297
trending(hashtag) No 3,421

attacker(userID) No 0
isFollowedBy(userID1,userID2) No 12,438,943

isPossiblySensitive(tweetID) No 179
trendingT(hashtag,t) No 0

Total - 12,731,199

website provides regularly updated categorization of URLs
and domains into 70+ categories, including whitelist (suitable
for children), adult, violence, spyware, virus infected, and
others. We used Spark SQL to process the collected tweets and
mark URLs in them as malicious using the collected datasets.
Specifically, we considered the hacking, malware, spyware,
phishing, and virus infected categories to be malicious. We
used Tuffy for learning the weights of the MLN in SocialKB
and conducting probabilistic inference on the KB. Tuffy ex-
ploits a relational database system (i.e., PostgreSQL) in a novel
way for efficient MLN weight learning and inference queries
over large datasets. It is written in Java and runs on a single
machine using multiple threads to speed up the execution.

We ran all the experiments on a 64-bit Ubuntu 12.04
machine with 6 Intel Xeon 1.6 GHz cores and 32 GB RAM.
We used a 2 TB hard disk to store tweets, the KB, and
temporary data of Tuffy.

B. Tweets and the Evidence Dataset

We collected 20,000 tweets from Twitter during June 2016.
We did not specify any filters during the data collection. As
expected, each tweet had over 100 attributes. We created a set
of ground predicates for these tweets. For trending hashtags,
we used Twitter’s REST APIs to collect them. For a subset
of verified users, we also collected their friendship lists and
their followers as this information was not explicitly available
in the tweets. In total, the evidence dataset had 12,731,199
million ground predicates. Table I shows the frequency and
type of ground predicates in the evidence dataset. Note that
the predicate tweeted(userID,tweetID) is more than 20,000
because some tweets had other tweets embedded in them due

to retweeting as well as quoting of others’ tweets. We did
not generate certain ground predicates in the evidence dataset
(e.g., in Figure 2(d)) and report a count of 0 in the table.

C. KB Construction

Given the predicates, first-order formulas, and the evidence
dataset, we used Tuffy to learn the weights for the formu-
las. Tuffy uses the discriminative weight learning approach
proposed by Lowd et al. [13]. Tuffy required 14 hours and
2 minutes to learn the weights. Table II shows the weights
learned by Tuffy for different formulas. (Hard constraints are
not shown here and have 1 as the weight. Recall that a possi-
ble world that violates a hard constraint has zero probability.)
The number of formulas in Table II is smaller than the original
set as we selected three queries of interest for probabilistic
inference: attacker(u), malicious(l), and isPossiblySensitive(t).
During weight learning, Tuffy considered only those formulas
that affect the queries considered for inference. It is interesting
to note that some of the formulas, which we believed would
have +ve weights, turned out to have -ve weights after weight
learning. This shows that our formulas could be conflicting, but
weight learning will rely on the evidence dataset to construct
the appropriate weights.

D. MAP Inference Queries

Next, we present the results of MAP inference using the
constructed KB on the evidence dataset. Note that MAP
inference computes the most likely possible world. The out-
put of the MAP inference task contained ground predicates
(corresponding to the queries) that are most likely to be satis-
fied/true. We executed three queries: attacker(u), malicious(l),
and isPossiblySensitive(t). The MAP inference task took 4
hours and 42 minutes on the evidence dataset.

Let us first analyze the results of the MAP inference
task for malicious(l). Note that only 21 URLs were known
to be malicious in the evidence dataset. For those newly
identified URLs, which were not in the evidence dataset,
we used VirusTotal10, a free online service that aggregates
the output/analysis of several antivirus engines and website
scanners on suspicious URLs and files. For each URL that
was output by the MAP inference task, we first checked if
that URL was flagged as malicious by at least one antivirus
engine/scanner using the public APIs of VirusTotal. If not, we
obtained the IP address for the URL’s domain, and then fetched
an aggregated report for that IP address from VirusTotal. The
report contained passive DNS information on the IP address
as well as latest URLs hosted in this address and detected
as malicious by at least one URL scanner or malicious URL
dataset. As shown in Table III, out of 84 URLs identified
by the MAP inference task, 4 were flagged by VirusTotal as
malicious by directly searching for the URL, and 66 were
flagged as malicious after resolving the IP address for the
domain of the URL. For 14 of the URLs, we could not find any
malicious reports on VirusTotal, which we refer to as benign.

10http://www.virustotal.com



TABLE II
WEIGHTS LEARNED BY TUFFY FOR THE RELEVANT FORMULAS IN SOCIALKB

f1 f3 f5 f6 f7 f8 f9 f10 f12 f13 f14 f15 f17 f18
-9.906 20.213 14.754 16.175 5.387 17.150 21.189 5.042 5.433 20.031 3.703 21.750 -9.826 -11.839

TABLE III
RESULTS FOR THE INFERENCE QUERY malicious(l)

Type # of Malicious Benign
of URLs Direct After IP (% of

inference identified URL address total)
(total) search resolution

MAP 84 4 66 14 (16.6%)
Marginal 72 3 57 12 (16.6%)

TABLE IV
RESULTS FOR THE INFERENCE QUERY attacker(u)

Type # of users # of user # of users who
of identified accounts tweeted malicious

inference suspended URLs
MAP 496 11 413

Marginal 450 7 392

It is promising to observe that only 16.6% of URLs output by
SocialKB were incorrectly detected as malicious.

Next, let us discuss the results of the MAP inference task for
attacker(u). As shown in Table IV, 496 users were identified
as suspicious users/attackers. Of these, 11 user accounts were
suspended by Twitter or removed. Among the identified users,
413 of them had posted tweets that contained malicious URLs,
which included those in the evidence dataset and the ones
identified by VirusTotal.

Finally, for isPossiblySensitive(t), the results are shown in
Table V. Of the 366 newly identified tweets, 95% of the
tweets contained malicious URLs: 22 of the tweets had URLs
that were malicious according to http://URLBlacklist.com, and
326 of the tweets had URLs that were flagged as malicious
by VirusTotal. Once again, this shows the effectiveness of
SocialKB.

E. Marginal Inference Queries

We also performed the marginal inference task for the same
set of queries. This task completed in 4 hours and 8 minutes.
Marginal inference outputs ground predicates (of the queries)
along with their probabilities of being true/satisfied. We further
analyzed the ground predicates output whose probability was
0.8 or higher.

First, we present the results of the marginal inference task
for malicious(l). We processed the URLs the same way as we
did before for MAP inference using VirusTotal. As shown in
Table III, out of 72 URLs identified by marginal inference
with probability 0.8 or higher, 3 were flagged by VirusTotal
as malicious by directly searching for the URL, and 57 were
flagged as malicious after resolving the IP address for the
domain of the URL. For 12 of the URLs, we could not find
any malicious reports on VirusTotal, i.e., benign. As before,

TABLE V
RESULTS FOR THE INFERENCE QUERY isPossiblySensitive(t)

Type # of Tweets containing malicious URLs
tweets URL Direct After IP

identified Blacklist URL address
.com search resolution

MAP 366 22 13 313
Marginal 306 18 9 278

only 16.6% of URLs output by SocialKB were incorrectly
detected as malicious.

Next, let us discuss the results of the marginal inference
task for attacker(u). As shown in Table IV, 450 users were
identified as suspicious users/attackers with probability 0.8 or
higher. Of these, 7 user accounts were suspended by Twitter
or removed. Among the identified users, 392 users had posted
tweets that contained malicious URLs, which included those
in the evidence dataset and the ones identified by VirusTotal.

Finally, for isPossiblySensitive(t), the results are shown
in Table V. Of the 306 tweets newly identified as being
possibly sensitive through the marginal inference task (with
probability 0.8 or higher), 305 tweets contained malicious
URLs according to either URLBlacklist.com or VirusTotal.

Note that a majority of the ground predicates output by
marginal inference were in the probability range (0.8-1.0].
For malicious URLs, the percentage of ground predicates in
this probability range was 77%. For suspicious users, the
percentage of ground predicates in the same range was 89%.
Finally, for possibly sensitive tweets, the percentage was 92%.

V. DISCUSSION

SocialKB is promising for discovering suspicious users and
malicious content on Twitter. Our ultimate goal is to learn the
KB (i.e., formulas and their weights) and conduct probabilistic
inference on millions of tweets, i.e., big data. Note that the
current implementation of SocialKB uses Tuffy. While Tuffy
performs well on millions of ground predicates using multiple
cores on a single machine, ProbKB [5] is reported to perform
better than Tuffy on even larger datasets using a shared-
nothing cluster. Thus on larger evidence datasets, ProbKB
should be used in SocialKB.

In this work, we manually constructed the first-order for-
mulas in the KB. (The weights were learned by Tuffy over
the evidence dataset.) We do not think this is a serious barrier
for using MLNs. Using recently proposed techniques [29, 4],
SocialKB can potentially learn new rules automatically over
social media posts. This way SocialKB can perform inference
on a richer KB leading to improved accuracy.

In the context of adversarial machine learning [7], which
is an important topic of research in security, we must ana-
lyze different attack models that are possible in SocialKB.



SocialKB does not assume that the data is independently and
identically distributed (i.i.d.). This is because MLNs can model
non-i.i.d. data. For a causative attack, where the adversary
manipulates the training process by influencing the training
data, it is more challenging to do so in SocialKB, because we
can potentially learn the weights for the formulas on millions
of ground predicates in the evidence dataset. The adversary
has to generate a very large number of tweets compared to
existing users on Twitter to influence the weight learning for
the formulas. If the formulas are kept secret, then it becomes
even harder for the adversary to guess them as there will
be an exponential number of possibilities (w.r.t. the number
of predicates) in the KB. We acknowledge that a thorough
analysis of the attack models in the context of adversarial
machine learning is needed.

VI. CONCLUSION

In this paper, we made the case for a simple and flexible
unified framework called SocialKB to model complex social
media posts and reason over it to ascertain the veracity of
the posts. Specifically, we focused on tweets from Twitter.
The primary goal of SocialKB is to identify suspicious users
and malicious content early on to discover emerging cyber
threats on social media. SocialKB is novel in the sense that it
leverages MLNs to model a variety of complex predicates and
constraints using first-order logic. In addition to non-temporal
predicates and constraints, we can also express those that
contain temporal attributes. We presented promising results
on how SocialKB can be used to flag suspicious users and
malicious content on 20,000 tweets.
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