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Abstract—We present a novel tool called XGossip for Internet-
scale cardinality estimation of XPath queries over distributed
XML data. XGossip relies on the principle of gossip, is scalable,
decentralized, and can cope with network churn and failures. It
employs a novel divide-and-conquer strategy for load balancing
and reducing the overall network bandwidth consumption. It
has a strong theoretical underpinning and provides provable
guarantees on the accuracy of cardinality estimates, the number
of messages exchanged, and the total bandwidth usage. In this
demonstration, users will experience three engaging scenarios:
In the first scenario, they can set up, configure, and deploy
XGossip on Amazon Elastic Compute Cloud (EC2). In the second
scenario, they can execute XGossip, pose XPath queries, observe
in real-time the convergence speed of XGossip, the accuracy of
cardinality estimates, the bandwidth usage, and the number of
messages exchanged. In the third scenario, they can introduce
network churn and failures during the execution of XGossip and
observe how these impact the behavior of XGossip.

I. INTRODUCTION

Today, there is a growing need for large-scale, federated data
sharing systems in the fields of biomedicine and healthcare.
This is because data sharing and collaboration among in-
stitutions can accelerate discoveries and foster unprecedented
innovations in areas such as cancer diagnosis and treatment.
One striking example is the initiative of the National Cancer
Institute for collaborative e-scene called caBIG [1], which is
a federated data sharing system with about 120 institutions.

Meanwhile, it is becoming evident that the overwhelming
success of peer-to-peer (P2P) and XML technologies can
advance the state-of-the-art due to two reasons: First, it has
been suggested that a P2P model should be adopted for
designing scalable, federated data sharing systems [2]. Second,
the HL7 Version 3 standard, an XML-based standard for
representation and interchange of healthcare data, is becoming
increasingly important for complying with the meaningful use
criteria of the HITECH Act (2009) [3] and achieving semantic
interoperability across data sharing systems [4].

In this work, we focus on the problem of cardinality
estimation that arises in Internet-scale, federated data sharing
systems. Selectivity (or cardinality) estimation is a classical
task dealt by query optimizers, for example, to decide the best
join order for a query. While the problem of XML selectivity
estimation in a local/centralized environment has been well-
studied (e.g., path trees and Markov tables [5], correlated
subpath trees [6], StatiX [7], Bloom Histogram [8], XS-
KETCH [9], XSEED [10], lossy compression [11], sampling-
based approach [12]), nobody has attempted to address this

issue in an Internet-scale environment. For this purpose, we
have developed a novel tool called XGossip, which operates
as follows: Given an XPath expression (or query) q, XGossip
estimates the total number of XML documents in the network
that contain a match for q with a provable guarantee on the
accuracy of the estimate. XGossip differs from prior work on
XML selectivity estimation in the sense that it estimates the
number of matching XML documents (in the network) rather
than the size of the result set of an XPath expression.

XGossip’s cardinality estimate is useful in many ways:
It is useful for optimizing a distributed XQuery query by
deciding the best join order based on the number of matching
documents (in the network) for different XPath expressions in
the query. It is also useful for developing IR-style relevance
ranking schemes. Another use case is in the design of a clinical
study, to quickly compute if sufficient samples are available for
the study, without actually querying the network of distributed
data sources. Today, there are tools such as HERON [13] that
allow an investigator to issue cohort discovery queries to know
the number of subjects available for a clinical trial.

In recent years, a few techniques have been proposed for
computing Internet-scale statistics over structured data [14],
[15], [16]. One may wonder if a technique like Distributed
Hash Sketches [16] can be adapted to handle XML. This seems
possible by first mapping each XPath pattern that appears in an
XML document onto a one-dimensional space. Unfortunately,
enumerating all possible XPath patterns is computationally
expensive and can result in a very large number of patterns
due to the hierarchical nature of XML, the presence of many
different element and attribute names in a document, and the
presence of axis such as ‘//’ in the queries.

Gossip algorithms are popular in large-scale distributed
systems due to their scalability and fault-tolerance (e.g., [17]).
For cardinality estimation, designing a gossip algorithm that
computes an aggregate like average (e.g., Push-Sum [18])
seems to be a viable choice. In such an algorithm, pairs of
peers exchange aggregates in a round, and after a provably
finite number of rounds and a provably finite number of
message exchanges, the aggregates converge to the true value.
The XML data model, however, introduces new challenges:
First, we should quickly compute the cardinality estimate
of a query once it has been posed rather than wait for a
finite number of gossip rounds after the query is known to
peers like in Push-Sum. Then we must continuously gossip
in the background, but we simply cannot gossip every XPath



pattern due to the potentially large number – we expect a
heterogeneous collection of XML documents in a distributed
environment. Second, our algorithm should scale with increas-
ing number of XML documents and peers in the network and
yield effective load balancing. Third, our algorithm should rely
on exchanging a finite number of small messages to minimize
the network bandwidth usage.

In the next section, we present the design of XGossip and
highlight its novel features to overcome the aforementioned
challenges. We refer the reader to a journal article [19] for
a complete description of XGossip including our theoretical
analysis and performance evaluation.

II. THE DESIGN OF XGOSSIP

A. System Model

Figure 1(a) shows a group of peers (e.g., clinical re-
searchers) connected using a DHT overlay network (e.g.,
Chord [20]). A peer owns a set of XML documents. It is said to
“publish” those documents that it wishes to share with others
in the network. The original documents reside at the publishing
peer’s end. Each peer executes an instance of XGossip and
continuously gossips with other peers. Peers communicate
with each other using the DHT’s routing protocol. At any time,
a peer can compute the cardinality estimate of an XPath query
and will contact a few other peers during this process.
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Fig. 1. System model

B. Novel Aspects of XGossip

XGossip is based on the principle of gossip. It is scalable,
decentralized, and can cope with network churn and failures;
these are properties desirable in a large-scale distributed sys-
tem. It draws inspiration from Push-Sum [18] and has many
novel aspects to efficiently compute cardinality estimates of
XPath queries over distributed XML data sources.

In XGossip, peers exchange concise summaries (or signa-
tures) of XML documents instead of XPath patterns. A docu-
ment is represented by its signature [21], which is essentially
a product of irreducible polynomials carefully assigned to a
summarized representation of the document, and captures the
document’s structure and content. A query is also mapped into
its signature. A useful necessary condition is that if a document

contains a match for a query, the query signature divides the
document signature [21]. Also the size of a document signature
is much smaller that the document itself [21].

For effective load balancing and reducing the network
bandwidth usage, XGossip employs: (i) a divide-and-conquer
strategy by applying locality-sensitive hashing (LSH) [22],
[23], and (ii) a compression scheme for compacting document
signatures in gossip messages. Suppose there are n peers in
the network. They are organized into teams of size ∆, where
∆ << n. A peer can be a member of multiple teams. The
peers in a team gossip only a fraction of the distinct document
signatures in the network. Given a signature, which can be
viewed as a multiset, the LSH function in XGossip outputs k
hash values, where each hash value is a 160-bit Chord id. Each
hash value identifies a team and is the id of a team member.
The ids of the remaining ∆− 1 team members are computed
by equally dividing the DHT address space. A peer that is a
successor (as defined by Chord [20]) of an id of a team is a
member of the team.

By virtue of LSH, given two signatures s1 and s2, the
probability that at least one of their team ids is identical is
1− (1− pl)k, where p is the Jaccard index of s1 and s2 and l
is the number of hash functions used by the LSH function to
generate each id. Thus, similar signatures are gossiped by the
same team with high probability. This increases the chances
of finding all the signatures that are required to estimate the
cardinality of an XPath query. Furthermore, the compression
scheme in XGossip is designed to take advantage of similar
signatures in a gossip message. The above design choices lead
to faster convergence of a cardinality estimate to its true value
and smaller gossip messages.

Example 1: Suppose the peers in Figure 1(a) are mapped
to the DHT address space as shown by the red and blue dots
in Figure 1(b). Let k = 2 and ∆ = 3. For simplicity, suppose
there is one signature s in the network. Let h1 and h2 denote
the output of the LSH function on s. The blue diamonds denote
the ids of members of team h1, which is managed by peers
p2, p5, and p6 (blue dots). The red triangles denote the ids of
members of team h2, which is managed by peers p1, p3, and
p4 (red dots). Both teams will gossip s.

Finally, XGossip is based on a strong theoretical under-
pinning, builds on the convergence speed of Push-Sum and
its property on mass conservation1, and the properties of
LSH, and provides provable guarantees on the accuracy of
cardinality estimates, the number of messages exchanged, and
the total bandwidth usage.
C. Key Components of XGossip

XGossip runs in two phases: (a) the initialization phase for
creating teams and initializing the local state on each peer, and
(b) the execution phase when peers in every team gossip.

1Given n peers, each peer pi starts with a sum and weight pair (xi, 1),
sends half the sum and weight to a randomly selected peer, keeps the
remaining halves, and updates it in each round . The convergence of Push-
Sum is based on the property of mass conservation, which is stated as follows:
In any round, the average of the sums on all the peers is 1

n

∑n
i=1 xi and the

sum of the weights on all the peers is always n.
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Fig. 2. Architecture of XGossip

Figure 2 illustrates the key components of XGossip. On
a peer, XGossip maintains a collection of tuple lists, one for
each team that the peer belongs to. A tuple list contains tuples
of the form (s, (f, w)), where s is a document signature and
(f, w) is a sum and weight pair like in Push-Sum [18]. The
list is sorted using the first item of each tuple, which serves
as a primary key. A tuple (⊥, (0, w′)) is also part of the list,
where ⊥ is a special multiset and serves as the largest key.
(The sum is always 0 and the weight is initialized to 1.) This
tuple is unique to XGossip and plays the role of a placeholder
for signatures that the peer has not yet seen during gossip.
As a result, the convergence speed of XGossip can be proven
using the property of mass conservation [19].

The Initialization Engine operates during the initialization
phase. It computes the signatures of the published documents.
For each unique signature s, it creates a tuple (s, (fs, 1)),
where fs is the number of documents having the same
signature s. (Note that two documents can have the same
signature [21].) Once the teams ids for s are computed using
LSH, the tuple (s, (fs, 1)) is sent to a randomly selected
member of each team through the Init. Message Controller.
The Init. Message Controller may receive messages from other
peers. Based on the type of message, the Tuple List Initializer
will either create a tuple list for a newly formed team and
update it, or update the tuple list of an existing team. When a
team is newly formed, the Init. Message Controller will send
a special message to a team member to inform about it.

The Execution Engine operates during the execution phase
and follows its own local clock. (The time interval between
successive gossip rounds, however, is the same for all peers.)
The Message Generator periodically creates a compressed
message for each team using its tuple list and instructs
the Exec. Message Controller to transmit the message to a
randomly selected team member. The Controller may receive
gossip messages from other peers during a round. These
messages are decompressed and forwarded to the Tuple List
Merger, which groups the received messages based on their
teams and then merges the sums and weights in the messages
for each team with the tuple list for that team.

Example 2: Suppose peer p6 (in Figure 1(b)) holds

the tuple list T1 = [(s1, (f1, w1)), (⊥, (fa, wa))] for team
h1 during a gossip round. Suppose it receives the tu-
ple list T2 = [(s1, (f2, w2)), (s2, (f3, w3)), (⊥, (fb, wb))]
from a team member during the round. After merg-
ing, T1 = [(s1, (

f1+f2
2 , w1+w2

2 )), (s2, (
f3+fa

2 , w3+wa

2 )), (⊥
, ( fa+fb2 , wa+wb

2 ))]. For a signature (or multiset) that appears
in both lists, the corresponding sums and weights are merged.
Otherwise, the sum and weight of ⊥ from the list missing the
signature is used. (Note that fa = 0 and fb = 0 always.) The
merging step requires linear time as the tuple lists are sorted.

A few scenarios such as churn, network partitioning, and
failures can disturb mass conservation in XGossip. The Mass
Adjuster takes steps to preserve mass conservation whenever
possible, by updating the sums and weights in the tuple lists
appropriately when a message is not delivered to a peer,
reaches a peer not belonging to the same team, or is delivered
to a peer that just joined the network but did not participate in
the initialization phase. (In the latter two cases, the receiving
peer rejects the message.) If a gossiping peer fails abruptly,
then mass conservation is not preserved (like in Push-Sum).
This can impact the quality of cardinality estimates depending
on how much disturbance was caused to mass conservation.

The Estimation Engine handles the task of cardinality esti-
mation. When an XPath query is posed at a peer, the query
initiator, LSH is applied on the query signature to identify
the candidate teams that may gossip the document signatures
that are divisible by (or supersets of) the query signature. For
each candidate team, the Query Message Controller sends the
query signature and team id to a randomly selected member
of that team. (Instead of the query signature, a proxy signature
generated from a DTD can be used to more accurately identify
the candidate teams [19].) The Signature Locator in the
Estimation Engine of a receiving peer locates the tuple list for
the team id in the message. If present, it scans the tuple list
and identifies every tuple that contains a document signature
that is a superset of the query signature. The Query Message
Controller of the receiving peer returns all the matching tuples
to the Estimation Engine of the query initiator. Otherwise, no
response is sent to the query initiator.

The Cardinality Aggregator of the query initiator collects
all the received tuples. Two or more tuples, each returned
by a different peer, may have identical signatures. When this
happens, the Cardinality Aggregator retains one of the tuples
(selected at random) and discards the rest. It then computes∑ f

w on the remaining tuples. Similar to Push-Sum, given a
tuple (s, (f, w))), f

w estimates the average of s’s frequency
over ∆ peers. Therefore, ∆×

∑ f
w is output as the cardinality

estimate of the query.
Next, we state our main result on the quality of cardinality

estimates computed by XGossip [19]: Given an XPath query
q, let R denote the set of distinct document signatures that are
divisible by q’s signature. Suppose qmin denotes the minimum
similarity between q’s signature and a signature in R. XGossip
can estimate the cardinality of q with a relative error of at most
|R| · ε and a probability of at least (1 − δ) in O(log(∆) +



log( 1
ε ) + log( α

α+δ−1 )) rounds, where α = 1 − (1 − qlmin)k,
and k and l are the parameters of the LSH function.

III. DEMONSTRATION SCENARIOS

(a) Screenshot during the execution phase of XGossip

(b) Screenshot during cardinality estimation
Fig. 3. Screenshots of the tool

XGossip is written in C++ and runs atop Chord [20]. The
user interface is a web application written in Python and
Javascript. (See Figure 3 for a few screenshots.) Users will
experience three engaging scenarios during the demonstration.

(1) Setup, configuration, and deployment: First, users
can setup and configure XGossip by choosing the number of
peers in the network, team size, number of gossip rounds,
time interval between successive gossip rounds, distribution
of published XML documents, and tuning parameters of LSH.
Then they can deploy XGossip on up to 400 EC2 instances in
a desired EC2 availability zone. The dataset includes synthetic
documents generated for 13 DTDs available on the Internet.

(2) Execution and cardinality estimation: Next, users
can execute XGossip and pose a variety of XPath queries
including those containing ‘//’ and ‘*’. They can observe the
convergence speed of the frequency of signatures gossiped by
different peers and their teams, the bandwidth usage in differ-
ent rounds, the number of messages exchanged, the average
message size, and the convergence of the cardinality estimates
to their true values using both query and proxy signatures, in
real-time. They can re-run XGossip with different settings and
observe the effect on its convergence speed, the accuracy of
cardinality estimation, and the bandwidth usage.

(3) Churn and failures: Finally, users can introduce churn
and failures, including peer crashes, during the execution of
XGossip. For churn, they can select the number of short-
lived peers and the session lengths of these peers based on

a log-normal distribution. For failures, they can choose the
percentage of peers that crash abruptly during the execution of
XGossip. They can observe the impact of churn and failures
on the convergence speed of XGossip and the accuracy of
cardinality estimates. They can also disable the Mass Adjuster
causing disturbance to mass conservation and observe how this
phenomenon impacts the behavior of XGossip.
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