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Abstract In this paper, we address the problem of cardi-
nality estimation of XPath queries over XML data stored
in a distributed, Internet-scale environment such as a large-
scale, data sharing system designed to foster innovations
in biomedical and health informatics. The cardinality esti-
mate of XPath expressions is useful in XQuery optimization,
designing IR-style relevance ranking schemes, and statisti-
cal hypothesis testing. We present a novel gossip algorithm
called XGossip, which given an XPath query, estimates the
number of XML documents in the network that contain a
match for the query. XGossip is designed to be scalable, de-
centralized, and robust to failures – properties that are desir-
able in a large-scale distributed system. XGossip employs
a novel divide-and-conquer strategy for load balancing and
reducing the bandwidth consumption. We conduct theoreti-
cal analysis of XGossip in terms of accuracy of cardinality
estimation, message complexity, and bandwidth consump-
tion. We present a comprehensive performance evaluation of
XGossip on Amazon EC2 using a heterogeneous collection
of XML documents.

1 Introduction

We have witnessed a huge success of the P2P model of com-
puting in the last decade. This has culminated in the devel-
opment of Internet-scale applications such as Kazaa, BitTor-
rent, and Skype. P2P computing has also become popular in
ecommerce and ebusiness and has led to the development of
many Internet-scale systems. Innovations in P2P computing,
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most notably the concept of Distributed Hash Table (DHT)
(e.g., Chord [78], Pastry [71], CAN [69], Tapestry [88], Kadem-
lia [52]), has been embraced by key-value stores such as Dy-
namo [24], Cassandra [48], and Voldemort [5].

The overwhelming success of XML, coupled with the
popularity of P2P systems, has led to research in index-
ing and query processing over XML data in a P2P environ-
ment [46,31,11,22,67]. One compelling use case for em-
ploying XML and P2P technologies is in the design of large-
scale data sharing systems for biomedical and healthcare
data. This is because of two reasons: First, it is suggested
that scalable clinical data sharing systems can be built using
a P2P architecture [77]. Second, HL7 version 3, an XML
based standard for representation and interchange of health-
care data (e.g., discharge summaries, lab reports), is becom-
ing a standard for enabling semantic interoperability across
systems [54]. A large-scale data sharing system can foster
unprecedented innovations in areas such as cancer treatment
and diagnosis. For instance, the Cancer Biomedical Infor-
matics Grid (caBIG) [26,8] is a real world data sharing sys-
tem for collaborative e-science and is growing in popularity.

Selectivity/cardinality estimation is a classical task dealt
by query optimizers, for example, to decide the best join or-
der for a query. In this work, we address the task of cardinal-
ity estimation of XPath queries in a distributed environment,
which is formally stated as follows:

Given an XPath expression (or query)q, estimate the
total number of XML documents in the network that
contain a match forq with provable guarantee on the
quality of the estimate.

The above cardinality estimate is useful for optimizing a
distributed XQuery query, for example, to decide the best
join order over distributed XML data depending upon how
many documents match different XPath expressions in the
query. It can also be used to develop IR-style relevance rank-
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ing schemes. Another use case is in the design of a clinical
study, where one important criteria isthe number of sub-
jects(i.e., participants) to be enrolled in the study. Given the
thrust towards building distributed data sharing systems [8],
biomedical researchers can be quickly notified (through car-
dinality estimation) whether sufficient samples are available
for a study, without querying the network of distributed data
sources. Today, there are tools being developed by the med-
ical informatics community to enable investigators to issue
cohort discovery queries to know how many patients are
available for a clinical trial (e.g., HERON [9]).

Many techniques have been developed for XML selec-
tivity estimation in a local/centralized environment (e.g., XS-
KETCH [62], StatiX [30], IMAX [63], XCLUSTER [61],
XSEED [86]). These techniques estimate the result set size
of an XML query expression. Our goal is different in the
sense that we aim to estimate the number of XML doc-
uments that match an XPath query instead of the query’s
result set size. Furthermore, we target a distributed envi-
ronment, where XML documents are stored across a large
number of participating peers. While computing statistics
over structured data stored in an Internet-scale environment
has been addressed in the past [58,59], none has focused on
computing Internet-scale statistics for the XML data model.

One straightforward approach would be to collect all the
XML documents in the network at any one peer and then ap-
ply existing techniques for XML selectivity estimation [62,
28,50]. Unfortunately, this approach will be prohibitively
expensive and would not scale. Another issue is that the
network may be dynamic where peers can join and leave
at any time. Under these circumstances, there are important
design requirements for an effective cardinality estimation
algorithm. First, the algorithm should be scalable and oper-
ate on a large number of peers. Second, it should be decen-
tralized and not rely on any central authority. Third, it should
consume minimum network bandwidth and be robust to the
dynamism of the network. Fourth, it should provide prov-
able guarantee on the quality of estimates.

In this work, we investigate how gossip algorithms can
be designed for XPath cardinality estimation. Gossip (or epi-
demic) algorithms are attractive for large-scale distributed
systems due to their simplicity, scalability, decentralized na-
ture, ability to tolerate failures and the dynamism of the
network, and ability to provide probabilistic guarantees.We
show that designing a gossip algorithm for cardinality esti-
mation over XML data is a non-trivial task and introduces
new challenges due to the very nature of the XML data
model. While Ntarmoset al. [58] argue that gossip algo-
rithms may not be suitable for statistics generation due to
high bandwidth requirement and hop-count, we show that
efficient gossip algorithms can indeed be designed.

The key contributions of our work are stated below.

– We design a novel gossip algorithm called XGossip for
cardinality estimation of XPath queries in an Internet-
scale environment. XGossip relies on the principle of
gossip and exchanges concise summaries of XML docu-
ments among participating peers. The design of XGossip
is inspired by the Push-Sum protocol [45].

– For effective load balancing and reducing bandwidth con-
sumption, XGossip employs: (i) a divide-and-conquer
strategy by applying locality sensitive hashing [41] and
(ii) a compression scheme for compacting document sum-
maries. As a result, a group of peers gossip only a por-
tion of the entire collection of XML document summaries
in the network, and this portion tends to contain similar
XML document summaries. This results in faster con-
vergence of cardinality estimates to their true values.

– We conduct theoretical analysis of XGossip in terms of
the accuracy and confidence of the cardinality estima-
tion, convergence, message complexity, and bandwidth
requirement.

– We present a comprehensive performance evaluation of
XGossip in an Internet-scale environment using Amazon
EC2 [10]. We use a heterogeneous collection of XML
documents to evaluate the effectiveness of XGossip. We
show that the empirical results are consistent with the
theoretical analysis.

The remainder of the paper is organized as follows. We
present the related work in Section 2, background and mo-
tivations in Section 3, the design of our gossip algorithms
in Section 4, the process of cardinality estimation of XPath
queries in Section 5, the analysis of our algorithms in Sec-
tion 6, a discussion on how churn and failures affect our
algorithms in Section 7, a comprehensive performance eval-
uation of our algorithms in Section 8, an extension to our
algorithms in Section 9, and our conclusions in Section 10.

This article is an extension of a previous publication in
the6th International Workshop on Networking Meets Databases
(NetDB), 2011 [76]. The new additions in this article in-
clude (i) a compression scheme to reduce bandwidth con-
sumption (Sections 4.5), (ii) a comprehensive performance
evaluation (Section 8) to show that the empirical results are
consistent with the theoretical analysis of the proposed gos-
sip algorithms and to study the impact of churn and failures
including peer crashes, and (iii) the proofs of theorems along
with new examples and figures.

2 Related Work

2.1 Information Exchange and Aggregate Computation Via
Gossip Algorithms

Gossip algorithms provide a means for communication, com-
putation, and information spreading [74,73]. Prior work on
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gossip algorithms have mainly focused on information ex-
change (or rumor spreading) [35,43,60,25,32,15] and com-
puting aggregates (and separable functions) [44,45,20,42,
56]. The essence of these algorithms lies in the exchange
of information or aggregates between a pair of peers (picked
randomly if the peers form a complete graph or among neigh-
bors using a probability matrix assuming the peers form an
arbitrary graph). It has been shown that after a provably fi-
nite number of rounds and a provably finite number of mes-
sage exchanges, the information has reached all the peers or
the aggregates (and separable functions) have converged to
the true value.

There are real-world systems that use gossip protocols.
Amazon S3 data centers use gossip protocols for spreading
server state information [2]. Dynamo [24], Cassandra [48],
and Redis [6] also utilize gossip protocols for information
exchange among server nodes.

2.2 Statistics Computation in a Distributed Environment

In the area of information retrieval, document frequency es-
timation in a P2P network has received some attention. Ben-
der et al.developed an approach for estimating the global
document frequencies using hash sketches [29] in a P2P net-
work [14]. This approach leveraged a DHT overlay network.
Neumayeret al.developed a hybrid aggregation technique
based on hierarchical aggregation and gossip-based aggre-
gation for estimating document frequencies in unstructured
P2P networks [57].

Recently, methods for statistics generation in large-scale
distributed networks have been developed for relational data.
Ntarmoset al. [58] developed algorithms for aggregates
(e.g., SUM, COUNT) and histograms (e.g., Equi-Width, Equi-
Depth histograms) by introducing the idea of Distributed
Hash Sketches built over a DHT. Pitouraet al. [59] adapted
several self-join size estimation algorithms (e.g., bifocal sam-
pling, sample-count) designed for a centralized environment
to work in a P2P environment. They also developed a new
technique using the Gini coefficient.

A few gossip algorithms have been developed for statis-
tics computation in large-scale networks. Lahiriet al. [47]
developed gossip algorithms for computing frequent elements.
The nodes in a network exchanged small-space synopsis (a.k.a.
sketches) of their data during gossip. The focus of this work
was mainly on the theoretical results. Huet al. [40] devel-
oped a distributed non-parametric density estimation algo-
rithm using a gossip protocol. This resource-constrained al-
gorithm achieved high estimation accuracy with small amount
of communication and storage overhead. Haridasanet al. [38]
developed a gossip algorithm where a node could estimate
the distribution of values held by other nodes. The messages
contained synopsis of data to reduce storage and bandwidth
consumption.

None of the above methods can be adapted in a straight-
forward way to compute cardinality estimates of XPath queries:
This is because of the hierarchical nature of XML and the
large number of possible XPath patterns that can match a
document. (More details are provided in Section 3.2.)

2.3 Statistics Computation over XML Data

Selectivity estimation over XML data in a local environment
has been well studied. The following approaches were de-
signed to estimate the result set size of an XML query ex-
pression such as a path expression or a twig pattern. Aboul-
ganaet al.proposed path trees and Markov tables to esti-
mate the selectivity of simple XML path expressions [12].
Chenet al.proposed a summary structure for estimating the
selectivity of XML twig queries [21]. Wuet al.developed
the pH-join algorithm for complex XML patterns using po-
sition histograms [83]. Freireet al.proposed StatiX [30] for
summarizing XML data with schema information using his-
tograms. Later Ramanathet al.extended StatiX to support
updates to XML repositories [63].

Lim et al.used the feedback from the query execution
engine to develop an online approach for large XML reposi-
tories [49]. Jianget al.proposed Bloom Histograms to sum-
marize XML data for estimating the selectivity of XML path
expressions. Subsequently, Polyzotiset al.developed the XS-
KETCH synopsis model and estimation framework to sup-
port complex XPath expressions with both branching and
value predicates [62]. Later they proposed XCLUSTER [61]
to deal with heterogeneous content in XML documents.

Recently, Zhanget al.proposed XSEED [86] that built
a small kernel of the XML data and incrementally updated
the synopsis based on the required space budget. Fischeret
al. proposed a new synopsis model based on lossy compres-
sion of XML documents that could be constructed in one-
pass, to support all the XPath axes [28]. Most recently, un-
like previous approaches that constructed a structural syn-
opsis of XML data, Louet al.developed a sampling based
approach to capture the tree structure and relationships be-
tween nodes in XML documents [50].

There has also been some work on cardinality estimation
over streaming XML data [65,53]. These approaches lever-
age sketching techniques to construct synopsis over XML
streams.

3 Background and Motivation

A well-formed XML document follows the syntax rules of
the XML specification and can be modeled as an ordered,
labeled tree. XPath [16] is a query language for navigating
and selecting nodes in an XML document. XPath queries
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  </book>
  <book>

   </book>
</books>

     <author>Mark Twain</author>

     <year>1998</year>

     <author>C.S. Lewis</author>
     <author>Pauline Baynes</author>

     <year>2004</year>
     <edition>1</edition>
     <price>$32.00</price>

     <title>The Adventures of Tow Sawyer</title>

     <title>The Chronicles of Narnia</title>

<books>
   <book>

<?xml version="1.0" encoding="ISO−8859−1"?>

(a) 

</output>
</title>

 <title>The Chronicles of Narnia
<output>

(c)

</output>

<output>

(b)

   for $e in doc("....")//books
      where $e/year > 2000
   return $e/title

Fig. 1 (a) XML documentd1. (b) XQuery queryq1. (c) Output ob-
tained by executingq1 ond1.
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(a) Structural Summary Graph (b) SSG of another document
(SSG) ofd1

Fig. 2 Example

can be represented bytwig patterns. A twig pattern is essen-
tially a tree-like pattern with nodes representing elements,
attributes, and values, and edges representing parent-child
or ancestor-descendant relationships. XQuery [18] is a func-
tional query language that subsumes XPath, and allows the
creation of new XML content. Figure 1(a) and 1(b) show a
well-formed XML document (d1) and XQuery query (q1),
respectively. Queryq1 when executed on documentd1 will
output the title of all books with year greater than 2000. The
output is shown in Figure 1(c).

3.1 Signature Representation of XML Documents and
XPath Queries

Recently, Rao and Moon [67,66] developed a method to
compactly represent XML documents for indexing and lo-
cating XML documents in a P2P network. A document is
represented by its signature, which is essentially a product
of irreducible polynomials. These irreducible polynomials
are carefully assigned to the edges of the Structural Sum-
mary Graph (SSG) of the document, so that the signature can
capture the document’s structural properties and content.An
XPath query can also be mapped to its signature [67]. A
useful necessary condition of this signature representation
is thatif a document contains a match for a query, then the
query signature divides the document signature[67]. An-
other benefit of these document signatures is that they are

Fig. 3 An XQuery query supported by caBIG

much smaller in size than the original XML documents [67]
and therefore, by exchanging document signatures instead
of actual documents, one can conserve bandwidth – a criti-
cal resource in an Internet-scale environment.

Example 1Consider the documentd1 in Figure 1(a) and
its Structural Summary Graph (SSG) in Figure 2(a). (The
SSG resembles a backward simulation of the XML docu-
ment tree [55].) Each edge of the SSG is assigned an irre-
ducible polynomial based on the path from the root of the
SSG. As shown in the figure,p0, p1, . . ., andp6 are irre-
ducible polynomials assigned to the edges of the SSG. For
example, the edge from book to author is assigned the poly-
nomial p2 after hashing the path /books/book/author into
a list irreducible polynomials. The signature of the docu-
ment is constructed by computing the product of all the irre-
ducible polynomials assigned to the edges of the SSG,i.e.,
the product ofp0, p1, . . ., andp6.

Example 2Two different SSGs may contain common paths
starting from their respective roots. Consider the SSG shown
in Figure 2(b). It has some common paths starting from the
root with the SSG in Figure 2(a). Therefore, the polynomials
p0, p1, andp2 are assigned to edges in both SSGs.

The presence of recursive element names in an XML
document causes cycles in its SSG and there can be mul-
tiple occurrences of an irreducible polynomial in the sig-
nature [67]. In essence, a document signature can also be
viewed as a multiset of irreducible polynomials if the prod-
uct is avoided. For example, the signature of the XML doc-
umentd1 in Figure 1(a) is equivalent to the multiset{p0, p1,
p2, p3, p4, p5, p6}.

3.2 Key Motivations

The Cancer Biomedical Informatics Grid (caBIG) [26,8],
an initiative of the National Cancer Institute, exemplifiesa
real world data sharing system for collaborative e-science.
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It has about 120 participating institutions across the US.
Consider the distributed XQuery query in Figure 3, which
is supported by caBIG. The queryfinds all the expression
data where there are at least 50 conditions for genes found
in the vacuole[3]. It performs joins across data exposed by
three data services, namely, Gene, GeneOntology, and Mi-
croarray. A more powerful query can be constructed wherein
the locations of the documents in the network are not ex-
plicitly specified. If a P2P architecture is used to make this
system scalable, then the above query can be processed in
two steps: First, we locate relevant XML documents based
on XPath expressions in the query using prior techniques
(e.g., XP2P [19], XPeer [72], multi-level bloom filters [34],
inverted index using document paths [31], hierarchy of in-
dexes using query-to-query mappings [33], path-based in-
dex [75], KadoP [11],psiX [67,66], XTreeNet [22]). Next,
we apply existing distributed XQuery processing techniques
(e.g., XQueryD [70], DXQ [27], DXQP [4], XRPC [87]).

One may wonder if a P2P architecture is suitable for
sharing sensitive biomedical and healthcare data (e.g., pa-
tient data). Due to legal constraints (e.g., HIPAA [7]) a fed-
erated model is typically used so that a data provider has
complete ownership of its data and can employ local access
control policies [1]. A P2P architecture can provide simi-
lar benefits as shown by CDN [64,68]. In CDN, the actual
clinical documents (in XML) are never exchanged or trans-
ferred across the network. Only authorized peers are allowed
to join CDN, unlike open P2P systems such as Kazaa where
membership is not controlled.

In this work, we aim to estimate the number of XML
documents in a network that contain a match for an XPath
query. Though this estimate does not provide the size of the
result set of an XPath query, a query optimizer can select
appropriate query plans based on how the relevant docu-
ments are distributed in the network. For instance, consider
the query in Figure 3. If we know the cardinality estimate of
XPath expressions such as /Gene/goAcc, /Gene[term= ’vac-
uole’], /Microarray/data[geneId]/condition, etc., a particular
join ordering can be chosen; other applications include IR-
style ranking schemes and tools for identifying if sufficient
subjects are available for clinical trials.

To the best of our knowledge, we believe our work is
the first to address the problem of cardinality estimation of
XPath queries in an Internet-scale environment. One may
wonder if a technique such as Distributed Hash Sketches [58],
designed for structured data, can be adapted for XML data.
This would require us to first map each XPath pattern that
appears in an XML document into one dimensional space.
However, enumerating all possible XPath patterns is com-
putationally expensive and can result in a very large num-
ber of patterns due to the hierarchical nature of XML, the
presence of many different element and attribute names in

����
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����
����
����
����

p1

p2

p3

p4 Overlay
network

CardEst(/Gene//goAcc) = ?

Fig. 4 The system model is shown here. Peers in the network can pub-
lish their XML documents. They continuously gossip with each other.
At any time, any peer can perform the task of cardinality estimation on
an XPath query.

a document, and the presence of axes such as ‘//’ (ancestor-
descendant) in the queries.

Although gossip algorithms seem simple1, dealing with
XML introduces several challenges. First, if our gossip algo-
rithm begins to execute when a query is posed, like in Push-
Sum [45], then we will have to wait for a finite number of
rounds before the cardinality estimate is available. On the
other hand, if gossip is continuously run in the background,
then it is infeasible to gossip all XPath patterns due to their
very large number – we expect a heterogeneous collection
of XML documents in a distributed environment. Second,
our algorithm should scale with increasing number of XML
documents and peers in the network and yield effective load
balancing. Third, network bandwidth is a critical resource
in an Internet-scale environment. Therefore, our gossip al-
gorithm should rely on exchanging a finite number of small
sized messages – an essential property of a good gossip al-
gorithm [17].

4 Our Proposed Approach

In this section, we present the Push-Sum protocol introduced
by Kempeet al. [45]. We draw inspiration from Push-Sum
and present a gossip algorithm called VanillaXGossip for
XPath cardinality estimation. Subsequently, we employ a
novel divide-and-conquer approach to overcome limitations
of VanillaXGossip and present an improved algorithm called
XGossip. We also provide the theoretical analysis of Vanil-
laXGossip and XGossip. For convenience, notations com-
monly used in subsequent discussions are listed in Table 1.

1 The proofs and analyses, however, are mathematically rigorous.
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Notation Description

n number of peers in the network
s, si signature of an XML document
fs frequency of a signatures
D number of distinct document signatures in the network
t a particular round during gossip

f , fi sum maintained by a peer during gossip
w, wi weight maintained by a peer during gossip
⊥ special multiset used by peers in VanillaXGossip
T tuple list maintained by a peer during gossip
∆ number of peers in a team or team size
⊥h special multiset used by peers of a team in XGossip
δ confidence parameter
ǫ accuracy parameter
k, l tuning parameters for locality sensitive hashing (LSH)
hs vector of values produced by LSH on signatures

α probability that there is at least one team (of peers)
that gossips two given signatures after applying LSH

R set of distinct document signatures that are divisible
by a query signature (or result set of a query)

r |R|
qmin minimum similarity between a query signature

and a signature inR
pmin minimum similarity between a proxy signature

and a signature inR

Table 1 Commonly used notations

4.1 System Model

We assume that peers are connected using a DHT overlay
network such as Chord [78]. (See Figure 4.) As in a typical
P2P network, a peer owns a set of XML documents. A peer
is said to “publish” those documents that it wishes to share
with others in the network. The original documents reside
at the publishing peer’s end. Peers continuously gossip with
each other. At any time, any peer can perform the task of
cardinality estimation on an XPath query. During this pro-
cess, a peer will lookup its local state or contact a few other
peers to compute the cardinality estimate.

4.2 Push-Sum Protocol

Suppose a P2P network hasn peers and each peerpi has
a non-negative valuexi. Suppose we want to estimate the
“average”i.e., 1

n

∑n
i=1 xi. In the Push-Sum protocol [45],

each peer maintains a sumst and weightwt in roundt. In
round 0, each peerpi sends(xi, 1) to itself. In any round
t > 0, a peer computes the new sum (or weight) by adding
the sum (or weights) of the messages it receives. It sends
half of the sum and half of the weight to a randomly selected
peer and the remaining half of the sum and weight to itself.
In a particular round, the ratio of the current sum and weight
is the estimated average. Push-Sum employs uniform gos-
sip where a peer can contact any other peer during a gossip
round – in terms of connectivity, the peers form a complete
graph.

Theorem 1 (Push-Sum Protocol [45])Suppose there are
n peersp1, . . . , pn in a network. Each peerpi has a value
xi ≥ 0. With at least probability1 − δ, there is a round
to = O(log(n) + log(1

ǫ
) + log(1

δ
)), such that in all rounds

t ≥ to, at peerpi, the relative error of the estimate of the
average value1

n

∑n
i=1 xi is at mostǫ.

The proof is based on an important property ofmass
conservation[45]. What this means is that in any round,
the average of the sums on all the peers is the true aver-
age, and the sum of the weights on all the peers is always
n. To compute the “sum”,i.e.,

∑n
i=1 xi, Push-Sum is run

with only one peer starting with a weight of 1 and the rest of
the peers starting with a weight of 0 [45]. Push-Sum is able
to preserve mass conservation in certain cases of failure and
churn. These are discussed in Section 7.

4.3 VanillaXGossip

We draw inspiration from Push-Sum to develop our gossip
algorithms VanillaXGossip and XGossip. We select Push-
Sum as the basis due to several reasons. Push-Sum relies
on uniform gossip where peers form a complete graph with
respect to connectivity. Because we assume that peers are
connected through a DHT-based structured overlay network,
any peer can contact any other peer (inO(log(n)) hops).
In addition, Push-Sum is synchronous, but peers can fol-
low their local clocks and the convergence holds as long
as mass conservation is preserved [45]. (The analysis of a
synchronous model is simpler than that of an asynchronous
model [45].) In both VanillaXGossip and XGossip, we also
compute “average” instead of “sum” because these algo-
rithms run in the background and to guarantee that only one
peer will set its weight to 1 and the rest of them to 0, will
require sophisticated distributed synchronization.

Algorithm 1 : Initialization phase in VanillaXGossip

global: T - sorted tuple list
proc InitGossip(p)

Let s1, ..., sn denote the distinct signatures published by peerp1
Compute the frequencyfi of eachsi published byp2
foreach si do3

Insert(si, (fi, 1)) into T4
end
Insert(⊥, (0, 1)) intoT5

end

Next, we describe VanillaXGossip. Rather than gossip-
ing XPath patterns in XML documents, peers gossip signa-
tures of XML documents. In subsequent discussions, we use
the terms “multiset” and “signature” interchangeably. Letfs
denote the frequency of a signatures. VanillaXGossip has
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two phases: initialization and execution phases. In the ini-
tialization phase as shown in Algorithm 1, each peer creates
a sorted list of tuplesT using only its local state. Each tu-
ple is of the form(s, (fs, 1)), wheres is a signature of an
XML document published by the peer andfs is the number
of XML documents having the same signatures and1 is the
initial weight like in Push-Sum. (Two different XML docu-
ments can have the same signature [67].) A tuple(⊥, (0, 1))

is also added toT , where⊥ is a special multiset. The list
T is kept sorted by the first item of the tuple (i.e., s), which
serves as a primary key. The special multiset⊥ is consid-
ered to be the largest of all possible signatures when ordered.
This means that in anyT , (⊥, (0, 1)) will appear as the last
tuple.

We use the following notations: T.begin(), T.end(), and
T.next() are used to iterate over T. For a tuplec ∈ T , c.s,
c.f andc.w refer to individual elements in the tuple.T [s]
denotes the tuple whose signature iss.

Remark 1A tuple with multiset⊥ plays the role of a place-
holder in VanillaXGossip for multisets (or signatures) that
are not yet known to a peer during a gossip round. This pre-
serves the important property of mass conservation like in
Push-Sum.

After initialization, peers begin the execution phase and
perform the steps in Algorithm 2 by invoking the procedure
RunGossip(). During a gossip round, a peer first collects
the lists received during that round including the one that it
sent to itself. It then merges the lists to update(fs, w) of
each tuple. After merging, the peer sends the merged list
with halved frequencies and weights to a randomly selected
peer, and sends another copy of that list to itself. (We select
a random peer by picking a random Chord id and routing the
message to the successor2 of that id.)

The merging process is unique to VanillaXGossip and
is described by procedureMergeLists() in Algorithm 2.
Because the lists are sorted by the primary key, the merg-
ing phase can be completed in linear time. The minimum
key/multiset is selected and its updated sum and weight are
computed across all the received lists. If a list does not con-
tain the key, then the sum and weight of⊥ are used. (The
sum value for⊥ is always 0.) In any round, for a tuple
(s, (f, w)) in the merged listTm, an estimate of the aver-
age of the frequency ofs in the network isf

w
.

Example 3Figure 5 shows an example of how the merging
of three listsT1, T2, andT3 is done usingMergeLists().
Consider the signatures1. It is found in T1, T2, andT3.
We can compute the new sum and weight fors1 as follows:
sumf1 = f1+f3+f4

2 and sumw1 = w1+w3+w4

2 . Consider

2 A successor of a keyin Chord is a peer mapped to a Chord ID
that is the closest to the key (greater than or equal to) in theclockwise
direction [78].

Algorithm 2 : Execution phase of VanillaXGossip

proc RunGossip(p)
Let T1, T2, ..., TR denote the lists received in the current1
round by peerp
Tm ←MergeLists(T1, T2, ..., TR)2
SendTm to a random peerpr and the participating peerp3

end

proc MergeLists(T1, T2, ..., TR)
Tm ← ∅4
for r=1 to R do5

cr ← Tr.begin()6
end
while end of every list is not reacheddo7

smin←min{c1.s, ..., cR.s}8
sumf ← 0; sumw ← 0;9
for r=1 to R do10

if cr.s = smin then11
sumf ← sumf + cr .f12
sumw ← sumw + cr .w13
cr ← Tr.next()14

else
sumf ← sumf + Tr[⊥].f15
sumw ← sumw + Tr[⊥].w16

end
end
Insert(smin, (

sumf

2
, sumw

2
)) into Tm17

end
return Tm18

end

the signatures2. It is not found inT2 andT3. Therefore,
(fb, wb) and(fc, wc) are used fromT2 andT3, respectively,
to compute the new sum and weight fors2 and their values
are:sumf2 = f2+fb+fc

2 andsumw2 = w2+wb+wc

2 .

Theorem 2 (VanillaXGossip)Givenn peersp1, . . . , pn, let
a signatures be published by somem peers with frequencies
f1, . . . , fm, wherem ≤ n. With at least probability1 − δ,
there is a roundto = O(log(n) + log(1

ǫ
) + log(1

δ
)), such

that in all roundst ≥ to, at peerpi, the relative error of the
estimate of the average frequency ofs, i.e., 1

n

∑m
i=1 fi, is at

mostǫ.

Proof. See Appendix A for the proof.

Discussion.VanillaXGossip differs from Push-Sum in a few
aspects. To illustrate these, suppose Push-Sum is used for
cardinality estimation of XPath queries. Push-Sum will be
initiated when an XPath query is posed at a peer. This peer
will inform other peers about the query. Once a peer be-
comes aware of the query, it will compute the cardinality
estimate of the query on its local documents and gossip this
estimate with other peers. After a finite number of rounds,
the average of the cardinality estimate is available. On the
other hand, VanillaXGossip runs continuously in the back-
ground and peers gossip the aggregate values of all the sig-
natures that they are aware of and are oblivious to the queries
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s1,(f3,w3)

s3,(f5,w5)

(fb,wb)⊥,

s1,(f1,w1)

s2,(f2,w2)

(fa⊥, ,wa)

s1,(f4,w4)

(fc,wc)⊥,

T1 T2 T3

s1,(sumf1
,sumw1

)

s2,(sumf2
,sumw2

)

s3,(sumf3
,sumw3

)

(sumf4
,sumw4

)⊥,
sumf1

= (f1+f3+f4)/2

sumf2
= (f2+fb+fc)/2

sumw1
= (w1+w3+w4)/2

sumw2
= (w2+wb+wc)/2 sumw4

= (wa+wb+wc)/2

sumf4
= (fa+fb+fc)/2

w3
= (wa+w5+wc)/2sum

sumf3
= (fa+f5+fc)/2

fa= fb = fc = 0

MergeLists(...)

Tm

Fig. 5 Merging of lists during VanillaXGossip

that may be posed. VanillaXGossip requires a placeholder to
ensure mass conservation and to guarantee convergencesim-
ilar to Push-Sum. When a query is posed, a peer will lookup
its local state and compute the cardinality estimate. We defer
the discussion on cardinality estimation until Section 5.

4.4 XGossip: A Divide-and-Conquer Approach

One may notice that in VanillaXGossip, the tuple listT at
each peer eventually contains all distinct signatures/multisets
in the network. This is inefficient in practice due to limited
amount of main memory available at each peer. Also the size
of messages can grow very large during gossip. To overcome
this limitation of VanillaXGossip, we employ a novel divide-
and-conquer strategy usinglocality sensitive hashing(LSH).
We call this improved algorithm XGossip. In XGossip, each
peer will gossip only a provably finite fraction of distinct
multisets in the network. The benefit of XGossip over Vanil-
laXGossip is three-fold: Firstly, each peer will consume less
memory. Secondly, each peer will consume less bandwidth
during gossip. Thirdly, the convergence of XGossip will re-
quire fewer number of rounds.

The concept of LSH, introduced by Indyk and Motwani [41],
has been employed in many domains, including indexing
high dimensional data and similarity searching [13,51], sim-
ilarity searching over web data [39] and in P2P networks [39,
37], ranges queries in P2P networks [36], and so forth. For
similarity on sets based on Jaccard index, LSH on a sets can
be performed as follows [39,13]: Pickk × l random linear
hash functions of the formh(x) = (ax+ b)mod p, wherep
is a prime, anda andb are integers such that0 < a < p and
0 ≤ b < p. Computeg(s) = min({h(x)}) over all items
in the set as the output hash value fors. It is established that
given two setss1 ands2, Prob(g(s1) = g(s2)) = |s1∩s2|

|s1∪s2|
.

Each group ofl hash values can be hashed again using an-
other hash functionf(·). Thusk hash values are output for
a set.

In XGossip, we apply LSH on a document signature. We
selectf(·) to be the SHA-1 hash function. This way the hash
values output by LSH for a signature are 160 bits and map

h1
⊥

h1
⊥

h1
⊥

h1
⊥

h3

h1

h2

p1

p2p3

p4

s

s

h3

h1

h2

p1

p2p3

p4

to p2

to p1

to p3

to p2

(a) Initialization phase (b) Execution phase

Fig. 6 Example for XGossip

onto the Chord DHT ring. We use the notationhs to denote
the vector of hash values produced by LSH ons. We say
thaths = (hs1, . . . , hsk) definesk teams fors. Each hash
value denotes the id of a team. Suppose∆ denotes the size
of each team. Then for any team (with id)hsi, we calculate
the Chord ids describing that team to be{hsi, hsi + 1 ×
2160

∆
, hsi+2× 2160

∆
, . . . , hsi+(∆−1)× 2160

∆
}. (The addition

operation will cause the result to wrap around the ring.)
The peers that are successors of the Chord ids defining a

team, constitute the members of the team. These peers gos-
sip only a fraction of the distinct signatures in the network.
Also, they will exchange messages with only the members
of their team during a gossip round. Given two signatures
with similarity p, the probability that there is at least one
team that gossips both signatures is1− (1−pl)k. (We useα
to denote this expression in later sections.) This is an impor-
tant property of LSH that XGossip builds on. Thus similar
signatures are gossiped by the same team with high prob-
ability. This increases the chances of finding all the signa-
tures that are required to estimate the cardinality of an XPath
query.

Example 4Consider the DHT ring shown in Figure 6(a).
Supposek = 3 and a signatures produces hash valuesh1

(red),h2 (blue), andh3 (green) after applying LSH. Each
team is of size 4. The teamh1 is shown by a dotted square
box. In this example, peersp1, p2, p3, andp4 are members
of h1.

The divide-and-conquer approach in XGossip raises an
interesting issue. Recall that in VanillaXGossip, a singlespe-
cial multiset⊥, required for mass conservation, is used by
all peers in the network and is sent to a peer picked at ran-
dom during a gossip round. But in XGossip, a peer cannot
maintain one special multiset⊥. Rather a peer maintains one
special multiset per team to which it belongs to. It sends that
special multiset in gossip messages to those peers that are
members of that team. In fact, a peer may belong to more
than one team. For a teamh, its special multiset is denoted
by⊥h.

XGossip also has two phases. The first phase is the ini-
tialization phase and each peer invokes the procedure
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Algorithm 3 : Initialization phase of XGossip

global: T - tuple list
proc InitGossipSend(p)

Let T be initialized as in VanillaXGossip1
foreach c ∈ T andc.s 6=⊥ do2

hs ← LSH(c.s)3

foreachhsi ∈ hs do4
Create a teamhsi and pick one id sayq for the team5
at random and send(c.s, (c.f, c.w)) andhsi to the
peer responsible forq according to the DHT protocol

end
end

end

proc InitGossipReceive(p, (s, (f, w)), h)
/* Keep one tuple list per team while receiving */
/* p is the peer that receives the message */
if Th does not existsthen createTh6
if s is a regular multiset andTh[s] existsthen7

Update the frequency in the tuple by addingf8
end
else ifs is a regular multiset andTh[s] does not existthen

Insert(s, (f, w)) into Th9
if ⊥h does not exist inTh then10

Insert(⊥h, (0, 1)) into Th;11
InformTeam(p,⊥h)12

end
end
else ifTh[s] does not existthen13

Insert(s, (f, w)) into Th;14
InformTeam(p, s)15

end
end
proc InformTeam(p,⊥h1

)
/* p is the peer executingInitGossipReceive */
Supposeh2, · · · , h∆ denote the other Chord ids for the team16
h1

Let peerp be the successor ofhi17
Send(⊥h1

, (0, 1)) to the successor ofh(i mod ∆)+118
end

InitGossipSend() shown in Algorithm 3. Each peer cre-
ates the sorted list of tuplesT based on the signatures of
the XML documents it has published similar to the initial-
ization phase of VanillaXGossip. For each tuple, the peer
applies LSH on the tuple’s signature and createsk teams.
For each team, the peer randomly picks one of its Chord ids
and sends the tuple to the successor of that id along with the
team id.

When a peer receives a message during initialization via
InitGossipReceive() in Algorithm 3, it checks if the sig-
nature in the message is a regular multiset,i.e., a document
signature. If so, it updates its list along with the special mul-
tiset for that team. (Note that a peer maintains a separate
tuple list for each team that it belongs to.) But if a peer does
not receive any message during initialization, then it does
not know which teams it belongs to.Then how can it initial-
ize its special multiset?We propose the following: When a
peer receives a signature and a team id, it initializes the tuple

Algorithm 4 : Execution phase of XGossip

proc RunGossip(p)
Let T1, T2, ..., TR denote the lists received in the current1
round by peerp
Group the lists based on their teams by checking their special2
multisets. Suppose each group is denoted byGi.
foreach groupGi do3

Merge the lists inGi according toMergeLists(·)4
Let Tm denote the merged list5
CompactTm to save bandwidth /* Optimization */6
Let h1, · · · , h∆ denote the Chord ids of the team7
Pick an indexj ∈ [1, ∆] at random such thatp is not the8
successor ofhj

SendTm to the peer that is the successor ofhj and top9

end
end

list for that team with the corresponding special multiset.In
addition, it contacts the next peer of the team (in clock-wise
direction along the DHT ring) and sends only the special
multiset, along with its initial sum and weighti.e., (0,1). A
peer on receiving a special multiset for a team forwards it
to the next member of the team similarly. (The procedure
InformTeam() in Algorithm 3 performs this task.) Note
that the special multiset is only forwarded when a peer learns
about a team it belongs to for the first time.

Example 5Consider Figure 6(a). Supposep1 andp3 receive
a signatures during the initialization phase (solid black ar-
rows). Each informs the next peer in the team with⊥h1

(black dotted arrows). Whenp2 and p4 learn for the first
time about teamh1, they forward⊥h1 to their next peers in
teamh1 (red dotted arrows).

During the execution phase of XGossip, a peer groups
the messages based on the teams from which they arrive.
These are exactly the teams that the peer became aware of
during initialization. For each group,MergeLists() is in-
voked. The merged list for a team is then sent to a randomly
selected peer belonging to that team. The steps involved in
the execution phase are described in Algorithm 4.

Example 6Consider Figure 6(b). Because peersp1, p2, p3,
andp4 are the members of the teamh1, they exchange mes-
sages belonging to that team during the gossip phase. In a
particular round, peers may exchange messages as shown
by solid black arrows.

Theorem 3 (XGossip)Givenn peersp1, . . . , pn in a net-
work, let a signatures be published by somem peers with
frequenciesf1, . . . , fm, wherem ≤ n. Supposepi belongs
to a team that gossipss after applying LSH ons. Let∆ de-
note the team size. With at least probability1− δ, there is a
roundto = O(log(∆) + log(1

ǫ
) + log(1

δ
)), such that in all

roundst ≥ to, at peerpi, the relative error of the estimate
of the average frequency ofs, i.e., 1

∆

∑m
i=1 fi, is at mostǫ.
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Proof. See Appendix A for the proof.

In Theorem 2, the average of the frequency of a signa-
ture is computed over the total number of peers, whereas in
Theorem 3, the average is computed over the team size.

4.5 Optimizing Bandwidth Usage in XGossip

Because network bandwidth is a critical resource in an Internet-
scale environment, we aim to reduce the size of messages
exchanged during gossip. The application of LSH enables
similar signatures to be gossiped by the same team with high
probability. Thus it is more likely that signatures contained
in a tuple list (sent to a particular peer during a gossip round)
have high similarity. We design a scheme to compact sig-
natures, which is more effective when signatures have high
similarity.

Definition 1 (Compressed Signature)Given a set of sig-
naturess1, . . . , sW , its compressed signature is a multiset
{(u1, B1), . . ., (uℵ, Bℵ)}, where{u1, . . . , uℵ} = s1 ∪ s2 ∪

· · · ∪ sW , i.e., the union of the multisets, and eachBi is a
bitmap of sizeW . The following properties hold.

a) Consider any(ui, Bi). If the jth bit of Bi is 1, thenui ∈

sj although there may exist auk such thatk 6= i and
uk = ui and thejth bit of Bk equals 0.

b) For anyk, 1 ≤ k ≤ W , suppose we construct a multiset
M by examining thekth bit of B1, . . ., Bℵ, whereM =

{ui | k
th bit of Bi equals 1}. ThenM = sk.

Example 7Suppose there are 3 signatures to compress:s1
= {a, b, c, d, d, d, e, f, g, h, h, h, h}, s2 = {b, c, c, c, d, d,
e, f, f, f, h, h}, ands3 = {a, b, c, d, d, e, f, g, h, h, h}. The
compressed signature is denoted by{(a,101), (b,111), (c,
111), (c, 010), (c, 010), (d, 111), (d, 111), (d,100), (e,
111), (f, 111), (f, 010), (f, 010), (g, 101), (h, 111), (h,
111), (h, 101), (h, 100)}. Consider (a,101) in the com-
pressed signature. The bitmap101 indicates that only the
first and third signatures contain ‘a’. Suppose we construct
a multiset using the2nd bit of every bitmap (as described in
Definition 1). This multiset will be{b, c, c, c, d, d, e, f, f, f,
h, h} and is identical tos2.

Next, we present the algorithms for compression and de-
compression of signatures. Each signature is sorted so that
compression can be done by reading the input signatures
just once. When a compressed signature is produced, the
pairs are kept sorted by the keyui. Let s[i] denote theith

element in the sorted signatures. Algorithm 5 describes the
steps involved during compression. Because the input signa-
tures are sorted, the union of the signatures can be computed
efficiently. During this process, the bitmaps are also gener-
ated. The time complexity of our compression algorithm is

O(W ·
∑W

i=1 |si|), whereW denotes the number of signa-
tures that were compressed. Algorithm 6 describes the steps
involved during decompression of a compressed signature to
obtain the original uncompressed signatures. The time com-
plexity isO(ℵ ·W ), whereℵ denotes the cardinality of the
union of the uncompressed signatures (or multisets).

Algorithm 5 : Compression of signatures

Input: list of signatures; each signature is sorted
Output: A compressed signature

proc CompressSignatures((s1, . . . , sW ))
j ← 11
for i = 1 to W do2

idx[i]← 03
end
while end of every signature is not reacheddo4

minV al←min{s1[idx[1]], ..., sn[idx[W ]]}5
uj ← minV al6
for i = 1 to W do7

if si[idx[i]] = minV al then8

Set theith bit of Bj to 19
idx[i]← idx[i] + 110

else
Set theith bit of Bj to 011

end
end
j ← j + 112

end
return {(u1, B1), . . . , (uj−1, Bj−1)}13

end

Algorithm 6 : Decompression of signatures

Input: a compressed signature
Output: original uncompressed signatures

proc DecompressSignatures({(u1, B1), . . . , (uℵ, Bℵ)})
for i = 1 to W do1

si ← ∅2
end
for i = 1 to ℵ do3

for j = 1 to W do4

if jth bit of Bi equals 1then5

Appendui to the end ofsj so thatsj is sorted6
end

end
end
return (s1, . . . , sW )7

end

5 Cardinality Estimation of XPath Queries

In this section, we describe the process of cardinality estima-
tion of XPath queries using VanillaXGossip and XGossip.
While in VanillaXGossip, the local state at a peer is suffi-
cient to produce the cardinality estimate, in XGossip, a few
peers are contacted during cardinality estimation.
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Fig. 7 Tuple lists at peers used for cardinality estimation

5.1 VanillaXGossip

Let us begin with VanillaXGossip. Suppose a queryq is is-
sued at peer ap. We search the merged listTm at p to find
every tuple(s, (fs, w)), such thats is a superset ofq’s signa-
ture. (Note that testing for the superset relationship between
a document signature and a query signature, when the signa-
tures are viewed as multisets, is equivalent to the divisibility
test between them [67].) We compute

∑ fs
w

over all such
tuples and multiply the sum byn to produce the desired car-
dinality estimate ofq.3 We can assume that a good estimate
of n is known via Push-Sum. By solely looking at the local
state ofp, we have computed the cardinality estimate ofq.

Example 8Suppose there are two document signatures, namely,
s1 and s3, in the network that are supersets ofq’s signa-
ture. Consider the tuple list atp shown in Figure 7(a). The
qualifying tuples from the tuple list are(s1, (f1, w1)) and
(s3, (f3, w3)). The cardinality estimate ofq is given byn×
( f1
w1

+ f3
w3

).

5.2 XGossip

Now let us focus on XGossip. Supposeq is posed at a peer
p. Let hq denote the output of LSH onq’s signature. For
each teamhqi (1 ≤ i ≤ k), we pick a team member at
random and sendq’s signature andhqi to it. The selected
team member (or peer) scans its sorted tuple list for team
hqi and returns every(s, (fs, w)) such thats is a superset of
q’s signature. Two or more tuples, each returned by a differ-
ent peer, may have identical signatures. When this happens,
we retain one of the tuples (selected at random) and discard
the rest. Finally, we compute

∑ fs
w

over the tuples received
from k peers (after discarding tuples as needed) and multi-
ply by∆ to produce the desired cardinality estimate ofq. In
XGossip, we contactk peers during cardinality estimation
and this requiresO(k log(n)) hops.

3 We compute “average” instead of “sum” and therefore, we multi-
ply by n, which is the number of peers in the network.

Example 9As in Example 8, lets1 ands3 be the signatures
that are supersets ofq’s signature in the network. Suppose
k = 3. We apply LSH onq’s signature to obtain 3 team ids,
say{h1, h2, h3}. Let p1, p2, andp3 denote a randomly se-
lected peer from teamh1, h2, andh3, respectively. We send
q’s signature to peersp1, p2, andp3. Figure 7(b) shows the
tuple lists maintained by these peers. Peerp1 returns tuples
(s1, (f11, w11)) and(s3, (f13, w13)). Peerp2 does not return
any tuple. Peerp3 returns the tuple(s3, (f33, w33)). Because
there are two tuples with identical signatures,i.e., s3, we dis-
card one of them. Suppose(s3, (f13, w13)) is discarded. The
cardinality estimate ofq is given by∆× ( f11

w11
+ f33

w33
).

Based on the property of LSH, we know that with proba-
bility α = 1−(1−pl)k there is at least one team that gossips
two different signatures with similarityp. During cardinality
estimation, we use the output of LSH on a query signature
to find, for each signature that is a superset of a query sig-
nature, at least one team that gossips it. It is possible that
the similarity between the query signature and a matching
document signature is low. For example, if the query has
one or two location steps but the matching document con-
tains many different elements and attributes. In such a situ-
ation, we may miss some document signatures completely,
and obtain a poor quality cardinality estimate. To overcome
this situation, we propose the idea of aproxy signature.

Definition 2 Suppose a query is posed over documents con-
forming to an XML SchemaS (or a DTD). A proxy signa-
ture is the signature of any document that conforms toS

and contains the maximum number of distinct elements and
attributes inS.

During cardinality estimation of a query, LSH is applied
on a proxy signature to identify the teams, instead of on the
query signature. The intuition is that the proxy signature will
have higher similarity with the matching document signa-
tures for the query. So it is more likely to find all the neces-
sary signatures by contacting the teams generated from the
proxy signature. As before, the query signature is sent to a
randomly selected member of each team.

6 Analysis of VanillaXGossip and XGossip

In this section, we present the asymptotic analysis of Vanil-
laXGossip and XGossip and compare their accuracy, con-
fidence, convergence, message complexity, and bandwidth
consumption. The results are summarized in Table 2.

6.1 Accuracy, Confidence, and Convergence

SupposeR denotes the set of document signatures that are
divisible by a query signature. Letr = |R|. To fairly com-
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Metric VanillaXGossip XGossip

Accuracy rǫ rǫ

Confidence (1 − δ) (1− δ)

Convergence O(log(n) + log(1
ǫ
) O(log(∆) + log(1

ǫ
)

(# of rounds) +log(1
δ
)) +log( α

α+δ−1
))

Bandwidth O(nD) O(log(n)kD∆)

Messages O(n log(n)) O( log(n)

n
kD∆log(∆))

Table 2 Comparison of VanillaXGossip and XGossip

pare VanillaXGossip and XGossip, we set the desired ac-
curacy and confidence of cardinality estimation torǫ and
(1 − δ) for both the algorithms. We state the following the-
orems and corollary. (See Appendix A for the proofs.)

Theorem 4 Given an XPath queryq, VanillaXGossip can
estimate the cardinality ofq with a relative error of at most
rǫ and a probability of at least(1−δ) inO(log(n)+log(1

ǫ
)+

log(1
δ
)) rounds.

Theorem 5 Given an XPath queryq, supposeqmin denotes
the minimum similarity betweenq’s signature and a signa-
ture in R. XGossip can estimate the cardinality ofq with
a relative error of at mostrǫ and a probability of at least
α · (1− δ

′

) in O(log(∆)+ log(1
ǫ
)+ log( 1

δ
′ )) rounds, where

α = 1− (1− qlmin)
k, andk andl denote the parameters of

LSH.

Corollary 1 XGossip can estimate the cardinality ofq with
a relative error of at mostrǫ and a probability of at least
(1− δ) in O(log(∆) + log(1

ǫ
) + log( α

α+δ−1 )) rounds.

6.2 Message Complexity and Bandwidth Consumption

In VanillaXGossip, eventually all peers gossip every unique
signature in the network. SupposeD denotes the number
of unique signatures. Therefore, the worst case bandwidth
consumed by each peer in a round isO(D), assuming that
the size of the longest signature is a small constant. Table 2
shows the worst case bandwidth per round considering all
n peers. Similar to Push-Sum, the message complexity of
VanillaXGossip isO(n log(n)).

To analyze, XGossip, let us first discuss the property
of consistent hashing in Chord [78]. Suppose there aren

peers andK keys. Chord guarantees that with high proba-
bility each peer receives at most(1+ρ)K

n
keys, whereρ is

bound byO(log(n)) [78]. In XGossip, we have at mostkD
team ids (or Chord ids). So each peer becomes the successor
for at mostO( log(n)

n
kD) teams. As there are∆ members

per team, there will be at mostO( log(n)
n

kD∆) distinct sig-
natures per team, which denotes the worst case bandwidth
consumption of a peer per round. Table 2 shows the worst
case bandwidth per round considering alln peers. Given that
each team in XGossip exchangesO(∆log(∆)) messages,
the overall message complexity is shown in Table 2.

7 Churn and Failures

Kempeet al.have discussed a few failure scenarios in Push-
Sum [45]. When a message is not delivered successfully to
a peer during a gossip round, either because it was lost or
because the receiving peer crashed in the initial round, then
the sending peer will simply consume the message as if it
was never sent and update its local sum and weight to pre-
serve mass conservation. Note that if a peer crashes in the
initial round, it is assumed to have not contributed any sum
and weight to the network.

If a peer decides to leave the network during gossip, it
should do so in an orderly fashion by sending its sum and
weight to another peer to preserve mass conservation. If at
most 50% of the peers decide to leave in an orderly fashion,
then one extra round is needed for convergence [45]. In this
case, the average (or sum) computed by Push-Sum would
converge to the true average (or sum) before the peers left
the network. If a new peer joins the network during gossip,
it may receive a gossip message from another peer. It is bet-
ter to exclude the new peer from participating in the current
gossip phase, because it may not know what type of aggre-
gate is being computed just by looking at the sum and weight
in the message. So this new peer should discard the message
and the sending peer must consume the message. By design,
if a peer crashes unexpectedly during gossip, then mass con-
servation will not be preserved.

A few other scenarios can arise. The gossip interval may
be shorter than the network delay between two peers. Mes-
sages may be delayed. (Push-Sum does not require the rounds
to be synchronous.) In such a situation, mass conservation is
preserved after the messages have reached their destination.
So the convergence will be delayed. A peer does not send a
duplicate message on a failure; it simply consumes the mes-
sage to preserve mass conservation. The above scenarios ap-
ply to both VanillaXGossip and XGossip.

VanillaXGossip and XGossip use Chord’sinsert API
to send a message to a peer during a gossip round.4 Only
when a peer receives a message successfully, the insert call
at the sender returns with a success status. On failure, the
sending peer consumes theundelivered messageto preserve
mass conservation. Similar to Push-Sum, VanillaXGossip
and XGossip cannot preserve mass conservation if a partic-
ipating peer crashes during gossip.

A few new issues arise in our gossip algorithms. The
DHT’s routing stabilization mechanism runs periodically in
the background to cope with changes in the network (e.g.,
failures, network partitioning, joining and leaving of peers).

4 This API takes 2 arguments: a key and a value. When invoked, it
uses remote procedure calls (RPCs) to send the value to the peer that is
the successor of the key. The underlying transport protocolis reliable
with features similar to TCP but optimized for high throughput and low
latency [23].
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It is possible for the successor of any of the Chord ids defin-
ing a team to change temporarily or permanently during the
execution of XGossip. Then a message sent by a peer of the
team may be received by a peer who is actively gossiping
but does not belong to the same team. We will call such a
messagea wrong-team message. The receiving peer should
reject the message and notify the sending peer, which can
then consume the message to preserve mass conservation.

If a new peer joins the network during the execution of
XGossip (or VanillaXGossip), it may receive a gossip mes-
sage from another peer. We will call such a messagea donot-
care message. Because this new peer did not participate in
the initialization phase of the gossip algorithm, we exclude
it from participating in the current execution phase5. This
peer should reject the message and notify the sending peer,
which can then consume the message to preserve mass con-
servation.

Scenario Can (sum, wt) Can disturbance
pairs be consumed? be avoided?
XGossip Vanilla- XGossip Vanilla-

XGossip XGossip

Undelivered msg. yes yes yes yes
Wrong-team msg. yes − yes −
Donot-care msg. yes yes yes yes
A peer crashes no no no no

Table 3 Scenarios causing disturbance to mass conservation in XGos-
sip and VanillaXGossip

Solely for the purpose of exposition, we introduce the
term “disturbance to mass conservation” to indicate the dif-
ference between the average of the sums held by the peers
(considering all signatures) and the true average. The the-
orems stated in earlier sections assume that mass conser-
vation is preserved, and therefore, there is no disturbance
to mass conservation. Any scenario that does not preserve
mass conservation (e.g., when peers involved in gossiping
crash) causes disturbance to mass conservation. It follows
that the higher the disturbance, the lower the accuracy of
frequency estimates of signatures, and therefore, the lower
the accuracy of cardinality estimation achieved by XGossip
and VanillaXGossip.

In Table 3, we summarize the different scenarios that
cause disturbance to mass conservation in XGossip and Vanil-
laXGossip. In XGossip, disturbances due to undelivered, wrong-
team, and donot-care messages can be avoided if the senders
can consume the (sum, weight) pairs of signatures in those
messages and the receivers can reject those messages (ex-
cept for undelivered messages). Similar is the case with Vanil-
laXGossip except that wrong-team messages do not arise.

5 The new peer can participate the next time the gossip algorithm
runs.

8 Performance Evaluation

Data- # of Avg. # Total Avg. Avg. Max.
set DTDs of docu- # of docu- docu- docu-

ments docu- ment ment ment
per ments signa- size size

DTD ture size (bytes) (KB)
(bytes)

D1 11 190,809 2,098,900 114 1343 39.6
D2 13 192,223 2,498,900 127 1330 39.6

Table 4 Datasets

We conducted a comprehensive performance evaluation
of both VanillaXGossip and XGossip and report the results
in this section. We show that the results are consistent with
the theoretical analysis presented in Section 6. To highlight
why gossip algorithms are a better choice, we implemented
an approach called Broadcast and compared it with our gos-
sip algorithms. Broadcast is described in Section 8.7. We
also report the behavior of XGossip under churn and fail-
ures, including peer crashes, in Section 8.9.

8.1 Implementation

We implemented VanillaXGossip and XGossip in C++ us-
ing the Chord package [80] and compiled the code using
the GNU g++ compiler (version 4.0.2). In the implementa-
tion of VanillaXGossip and XGossip, we followed the steps
described in Section 7 to avoid disturbance to mass conser-
vation due to undelivered and donot-care messages. How-
ever, for a wrong-team message in XGossip, although the
receiving peer discarded the message, the sending peer did
not consume the message. One may wonder if this caused
substantial disturbance to mass conservation in XGossip:
Gladly this was not the case, because in our experiments,
the number of wrong-team messages was a tiny fraction (i.e.,
under 0.55%) of the total number of gossip messages.6

8.2 Datasets and Queries

We used two different datasets in the evaluation of Vanil-
laXGossip and XGossip. We generated the datasets using a
synthetic XML data generator from IBM and DTDs pub-
lished on the Internet [81,82,84]. The characteristics of the
datasets and document signatures are summarized in Table 4.
Note that datasetD1 is a subset of datasetD2. We usedD1

to compare VanillaXGossip, XGossip, and Broadcast. We
usedD2 to demonstrate an inherent limitation of VanillaX-
Gossip – it suffers from large message sizes during gossip.

6 If the number of wrong-team messages becomes large, then not
consuming them would cause higher disturbance to mass conservation.
To avoid this, we can modify the implementation of XGossip tocon-
sume these messages.
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We generated XPath queries for each DTD by using the
XPath generator from the YFilter project [85]. The queries
contained the wildcard ‘*’ and the ‘//’ axis. The total num-
ber of queries was 753. For each query,qmin was at least
0.3. We created 6 different query sets by selecting queries
from the original set that had theirpmin value in a particular
range as shown in Table 5. Recall thatqmin (or pmin) is the
minimum similarity between a query signature (or a proxy
signature) and a document signature inR, i.e., the result set
of the query.

Query set Value ofpmin # of queries

Q0 [0, 0.5) 101
Q1 [0.5, 1] 652
Q2 [0.6, 1] 356
Q3 [0.7, 1] 300
Q4 [0.8, 1] 277
Q5 [0.9, 1] 26

Table 5 Query sets

8.3 Network Setup and Distribution of Documents

We ran VanillaXGossip and XGossip in an Internet-scale en-
vironment using the Amazon Elastic Compute Cloud (EC2)
[10]. VanillaXGossip and XGossip were run on 20 EC2 in-
stances or virtual machines. (By default, EC2 allows at most
20 instances per user.) Each instance was a medium instance
with 2 virtual cores, 1.7 GB of RAM, 350 GB of disk space,
and had moderate I/O performance. We ran all instances in
the US East availability zone.

We used two separate setups for the evaluation of Vanil-
laXGossip and XGossip. We used the first setup to show
XGossip’s superiority over VanillaXGossip and Broadcast.
We used the second setup to conduct an in-depth evaluation
of XGossip.

In each setup, we conducted the evaluation by establish-
ing a DHT overlay network withn peers. We ran an equal
number of peers on each EC2 instance. We distributed the
documents in a dataset as follows: We randomly pickedz

peers per DTD. We distributed the documents conforming
to each DTD uniformly across thosez peers. Each peer pub-
lished all the assigned documents.

Table 6 shows the values ofn, z, and the number of EC2
instanced used in the first setup. The mean and standard de-
viation of the number of documents published by a peer for
datasetD1 is also shown. Table 7 shows the values ofn, z,
and the number of EC2 instanced used in the second setup.
The mean and standard deviation of the number of docu-
ments published by a peer for datasetD2 is also shown. Note
that datasetD1 was not used in the second setup because it
was a subset ofD2.

Each peer followed its local clock during the execution
of VanillaXGossip and XGossip and the interval between
successive gossip rounds was fixed at 120 secs.

Total # # of EC2 # of peers # of peers # of documents
of peers instances per picked published by
in the instance per DTD a peer

network (z) D1

(n) (µ, σ)

1000 20 50 500 2098.9, 99.1
2000 20 100 1000 1049.5, 49.0

Table 6 Network setup and distribution of documents inD1 for com-
paring Broadcast, VanillaXGossip, and XGossip

Total # # of EC2 # of peers # of peers # of documents
of peers instances per picked published by
in the instance per DTD a peer

network (z) D2

(n) (µ, σ)

500 20 25 250 4997.8, 257.7
1000 20 50 500 2498.9, 99.1
2000 20 100 1000 1249.5, 49
4000 20 200 2000 624.7, 24.5
8000 20 400 4000 312.3, 12.2

Table 7 Network setup and distribution of documents inD2 for in-
depth evaluation of XGossip

8.4 Evaluation Metrics

We compared VanillaXGossip and XGossip on three met-
rics: (a) the accuracy of cardinality estimation, (b) the con-
vergence speed of the frequency of signatures, and (c) the
bandwidth consumption during gossip. Unless otherwise stated,
VanillaXGossip and XGossip were run with compression
enabled to minimize the bandwidth consumption.

For the accuracy of cardinality estimation, we calculated
the relative error of the cardinality estimate of queries. For
the convergence speed, we calculated the mean absolute rel-
ative error (MARE) of the frequency estimate of document
signatures. For the bandwidth consumption, we calculated
the amount of data transmitted per round by all peers.

We also evaluated XGossip by varying the total number
of peers in the network and choosing different values for
the LSH parameterk and the team size (∆). We fixed the
LSH parameterl at 10 so thatα ≈ 0 when two signatures
have similarity less than 0.5. Recall thatα is the probability
that there is at least one team that gossips two given sig-
natures. We measured the average number of teams that a
peer belonged to, the average number of signatures gossiped
by a peer and by a team, and the average size of messages
exchanged during gossip. In addition, we calculated the to-
tal number of messages exchanged across all rounds. We
measured the amount of transmitted data per round and also
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evaluated the benefit of our compression scheme to reduce
the bandwidth consumption of XGossip.

8.5 Diffusion Speed of Signatures During Gossip
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Fig. 8 Diffusion speed of signatures in VanillaXGossip,n = 1000

One may wonder how quickly do the signatures diffuse
through the network during gossip. Just for the purpose of
illustration, the diffusion speed of signatures in VanillaX-
Gossip is shown in Figure 8 by computing the fraction of
the unique signatures in the network maintained by a peer
(in its tuple list) in each round. We observed that by round
11, three randomly selected peers had learned about all the
signatures in the network. The trend would be similar for
XGossip when we observe a particular team, but the peers
in the team would learn about all their respective signatures
in fewer rounds. Although a peer may learn about all the
unique signatures in the network, the frequency estimates
of these signatures may have high relative error and more
rounds may be needed for convergence.

8.6 Comparison of VanillaXGossip and XGossip on
DatasetD1

We compared the convergence speed of the frequency of
signatures of VanillaXGossip and XGossip on datasetD1.
Figure 9(a) shows the convergence speed of VanillaXGos-
sip for three randomly selected peersp1, p2, andp3. Be-
yond round 10, the mean absolute relative error of the fre-
quency estimate of a subset of signatures remained below
10%. Figure 9(b) shows the convergence speed of XGos-
sip for three randomly selected peers which belonged to
three different teams. We observed that beyond round 5, the
mean absolute relative error of the frequency estimate of
signatures for three randomly selected peers remained be-
low 10%. Thus, XGossip converged faster than VanillaX-
Gossip because only∆ peers gossiped a particular signature
instead of all the peers in the network. Recall that while the
convergence speed of VanillaXGossip depends onlog(n)
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Fig. 9 Comparison of the convergence speed of VanillaXGossip and
XGossip,n = 1000

(Theorem 2), the convergence speed of XGossip depends on
log(∆) (Theorem3).

We also compared the accuracy of cardinality estimation
of VanillaXGossip and XGossip at different rounds, namely,
5, 10, and 20, for all the 753 XPath queries. (Thepmin value
was in the range [0,1]). Figure 10(a) compares the accuracy
of cardinality estimation for VanillaXGossip and XGossip
and shows the percentage of queries that had a relative error
below 20% (rǫ ≤ 0.2). As expected, both VanillaXGossip
and XGossip yielded better accuracy with increasing num-
ber of rounds – they were able to estimate more queries un-
der 20% relative error. (This was because the relative error
of the frequency estimate of each signature that was a super-
set of a query signature decreased as the number of rounds
increased.)

We observed that at round 5, the accuracy of XGossip
was higher than that of VanillaXGossip: XGossip estimated
84.6% of the queries under 20% relative error, but VanillaX-
Gossip could estimate only 70.2% of the queries with the
same level of accuracy. We made an interesting observation
starting from round 10. VanillaXGossip had better accuracy
than XGossip and by round 20, both reached their highest
accuracy: 99.5% for VanillaXGossip and 92.2% for XGos-
sip.7 The reason why XGossip had lower accuracy than Vanil-
laXGossip is straightforward: VanillaXGossip can find the

7 We ran VanillaXGossip and XGossip for more than 20 rounds, but
the accuracy did not improve further.
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Fig. 10 Accuracy of cardinality estimation by VanillaXGossip and
XGossip,n = 1000, ∆ = 8, k = 8, l = 10

complete result set for a query locally during cardinality es-
timation, but XGossip may miss signatures in the result set
due to the application of LSH. Figure 10(b) shows the dis-
tribution of the estimation accuracy for queries by round 20.

Finally, we discuss the bandwidth consumption of Vanil-
laXGossip and XGossip. Figure 11 shows the amount of
data transmitted during each of the 20 rounds. (Compression
was enabled for both approaches.) The bandwidth consumed
by VanillaXGossip grew quickly with increasing number of
rounds and reached 731 MB by round 20 when most of the
signatures were learned. By design, peers in XGossip gossip
only a finite fraction of the signatures in the network. There-
fore, XGossip transmitted a meager 25 MB per round – al-
most 30 times less than VanillaXGossip. The total amount
of data transmitted by VanillaXGossip and XGossip in 20
rounds was 10,309 MB and 484 MB, respectively.

8.7 Comparison of Broadcast with Gossip Algorithms

We compared our gossip algorithms with an approach called
Broadcast. In Broadcast, each peer computes its tuple list
based on the documents that it wishes to publish. It then
sends its tuple list to all other peers in the network. When
a peer receives tuple lists from other peers, it merges these
lists with its own list and updates the frequencies of sig-
natures. In the end, each peer learns about all the distinct
signatures in the network along with their frequencies. Note
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Fig. 11 Bandwidth consumption of VanillaXGossip and XGossip,
n = 1000, ∆ = 8, k = 8, l = 10

that we expect any peer to be capable of estimating the car-
dinality of an XPath expression.

We compared the bandwidth consumption of Broadcast,
VanillaXGossip, and XGossip for datasetD1. Figure 12 shows
the total amount of data transmitted by peers using the three
approaches for1, 000 and2, 000 peers. (We used compres-
sion in Broadcast, to get the best result.) For VanillaXGossip
and XGossip, we report the total bandwidth consumed in
20 rounds. Broadcast consumed significantly higher band-
width than our gossip algorithms. XGossip consumed the
least bandwidth and was better than VanillaXGossip. Broad-
cast consumed 50 times and 131 times more bandwidth than
XGossip on 1000 and 2000 peers, respectively. We conclude
that Broadcast will yield poor scalability with increasing
number of peers. Note that in Broadcast, we requireO(n2)
messages to be exchanged, which is asymptotically higher
than our gossip algorithms. (See Table 2.)
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8.8 Evaluation of XGossip on DatasetD2

While XGossip had to compromise on the accuracy of car-
dinality estimation for datasetD1, we show that it can scale
better than VanillaXGossip for larger datasets by consuming
less amount of bandwidth. VanillaXGossip has an inherent
limitation: it suffers from large message sizes during gossip.
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DatasetD2 had more unique signatures than datasetD1.
Towards the later rounds in VanillaXGossip, peers had learned
about most of the signatures in the network. However, the
tuple list at a peer became so large that the peer could not
transmit its gossip message through the underlying DHT.
This caused VanillaXGossip to fail during the execution phase
onD2. In contrast, XGossip completed successfully by virtue
of its scalable design.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 6 8 10

M
ea

n 
ab

s.
 r

el
at

iv
e 

er
ro

r 
(%

)

Round number

below 10%

peer p1 (team 1)
peer p2 (team 2)
peer p3 (team 3)

Fig. 13 Convergence speed of XGossip,n = 1000, ∆ = 16, k = 4,
l = 10

Hereinafter, we focus on the evaluation of XGossip on
D2. We measured the convergence speed of the frequency of
signatures in XGossip, and the trend, as shown in Figure 13,
was similar to what we observed forD1. Starting from round
5, the mean absolute relative error of the frequency estimate
of signatures for 3 randomly selected peers (from different
teams) remained below 10%.
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Fig. 14 Accuracy of cardinality estimation achieved by XGossip after
20 rounds for different values ofk and∆, n = 1000

8.8.1 Impact ofk and∆ on the Performance of XGossip

We also evaluated the effect of the LSH parameterk and
team size∆ on the accuracy of cardinality estimation of
VanillaXGossip. XGossip ran for 20 rounds and we per-
formed cardinality estimation on all the 753 XPath queries.
The results are shown in Figure 14. Withl = 10, whenk was
higher,α increased quickly and therefore, the probability of
finding at least one team that gossiped two signatures with

LSH parameter Team size Average time
k (∆) to contactk peers (ms)

4 8 28.04
4 16 28.31
8 8 53.33
8 16 56.36

Table 8 Time taken to contactk peers during cardinality estimation

similarity at least 0.5 increased. Therefore, the accuracyof
cardinality estimation was much higher whenk = 8: 92.3%
of the queries were estimated under 20% relative error as
compared with 70.8% fork = 4. Because XGossip ran for
20 rounds, we did not observe any change in the accuracy of
cardinality estimation when∆ was increased from 8 to 16;
however, the total time to contactk peers during cardinality
estimation increased. (See Table 8.)

As reported in Table 2, the bandwidth consumption of
XGossip depends onk and∆. The results are shown in Fig-
ure 15. Whenk was increased from4 to 8 (and∆ was set
to 8), the amount of data transmitted per round (in the later
rounds) doubled from 30.9 MB to 61.8 MB. This was be-
cause each signature was gossiped byk teams. Again, when
∆ was increased from8 to 16 (andk was set to 8), the band-
width consumption doubled in the later rounds and reached
a maximum of 123.9 MB per round. One may argue that if
∆ = 1, the bandwidth consumption will be the least. (This
implies no gossip.) However, this is not suitable because if
a peer fails, then all the signatures that it is responsible for
(after applying LSH) will be lost. Moreover, if a particular
signature is frequently accessed during cardinality estima-
tion, then a single peer will be overloaded. When∆ > 1,
failures can be tolerated, and the load during cardinality es-
timation can be distributed across members of a team.
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and∆, n = 1000

Next, we calculated the accuracy of cardinality estima-
tion achieved by XGossip for query setsQ1 throughQ5

listed in Table 5. Note that each query set had a different
range ofpmin. In Theorem 3, we showed that the accu-
racy of cardinality estimation depends onqmin (or pmin if
a proxy signature is used). The higher the value ofqmin (or



18 Vasil Slavov, Praveen Rao

0

20

40

60

80

100

[0-10) [10-20) [20-40) [40-100)

%
 o

f q
ue

rie
s

Error range (%)

Q5 (pmin ≥ 0.9)
Q4 (pmin ≥ 0.8)
Q3 (pmin ≥ 0.7)
Q2 (pmin ≥ 0.6)
Q1 (pmin ≥ 0.5)

(a)n = 1000, ∆ = 8, k = 4, after 20 rounds

0

20

40

60

80

100

[0-10) [10-20) [20-40) [40-100)

%
 o

f q
ue

rie
s

Error range (%)

96.9%
Q5 (pmin ≥ 0.9)
Q4 (pmin ≥ 0.8)
Q3 (pmin ≥ 0.7)
Q2 (pmin ≥ 0.6)
Q1 (pmin ≥ 0.5)

(b) n = 1000, ∆ = 8, k = 8, after 20 rounds

Fig. 16 Accuracy of cardinality estimation achieved by XGossip for
∆ = 8

pmin), the higher is the probability of having a more accu-
rate estimate. Thus we expect XGossip to achieve the high-
est level of accuracy forQ5 and the lowest forQ1. This is
precisely what we observed in our evaluation. Figures 16(a)
shows the results fork = 4 and∆ = 8. For under 10% rela-
tive error, XGossip correctly estimated 84.6% of the queries
in Q5, but could do the same for only 37.6% of the queries
in Q1. Figure 16(b) shows the results fork = 8 and∆ =
8. The accuracy of cardinality estimation improved signif-
icantly. The reason was by increasingk (and l = 10), α
increased quickly and therefore, the probability of findingat
least one team that gossiped two signatures with similarity
at least 0.5 increased. This, in turn, increased the probabil-
ity of finding all the signatures in the result set of a query,
thereby yielding higher accuracy. For all the query sets ex-
ceptQ1, less than 4% of the queries were estimated with
relative error higher than 10%.

When the team size was set to 16, the trends were sim-
ilar, because we performed the cardinality estimation task
after 20 rounds, and by then the frequency estimate of ev-
ery document signature had converged for both∆ = 8 and
∆ = 16. The results are shown in Figures 17(a) and 17(b).

While a higher value ofk improved the accuracy of car-
dinality estimation of XGossip, it also increased the band-
width consumption. (See Figure 15.) As XGossip achieved
good accuracy and bandwidth efficiency fork = 8 and∆ =

8, we used these values for the rest of the experiments.
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Fig. 17 Accuracy of cardinality estimation achieved by XGossip for
∆ = 16

We measured how the accuracy of cardinality estimation
improved with increasing number of rounds for 1000 peers,
∆ = 8, andk = 8 (Figure 18). At round 5, XGossip es-
timated 83.5% of the queries under 20% relative error; this
increased to 88.8% at round 10 and 92.3% at round 20.

0

20

40

60

80

92
100

[0-20) [20-40) [40-60) [60-80) [80-100)

%
 o

f q
ue

rie
s

Error range (%)

round 5
round 10
round 20

Fig. 18 Improvement in the accuracy of cardinality estimation with
increasing # of rounds,n = 1000, ∆ = 8, k = 8, l = 10

8.8.2 Evaluation of Compression in XGossip

In Section 4.5, we proposed a compression scheme for XGos-
sip to reduce the size of messages exchanged during gossip
rounds. We evaluated the bandwidth savings achieved by our
scheme on datasetD2 with 1000 peers in the network, and
k = 8 and∆ = 8. Figure 19 compares the bandwidth con-
sumed by XGossip in each round with and without compres-
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Fig. 19 Bandwidth savings in XGossip through signature compres-
sion,n = 1000, ∆ = 8, k = 8, l = 10

sion. Interestingly, with compression, XGossip consumed
about 5 times less bandwidth than without compression, in
the later rounds: 62 MB with compression vs 340 MB with-
out compression. We also computed the total amount of data
transmitted in 20 rounds. While with compression, XGossip
transmitted 1,806 MB, without compression it transmitted
9,874 MB.

8.8.3 Scalability of XGossip
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Fig. 20 Bandwidth consumption of XGossip by varying the # of peers,
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We studied the scalability of XGossip by varying the
number of peers in the network (n) from 500 to 8000. In
each setting, the same datasetD2 was used withk = 8 and
∆ = 8; thus, the total number of teams was identical in each
case. Compression was also enabled.

Results for 500, 1000, and 2000 peers.We begin by report-
ing the results forn = 500, n = 1000, andn = 2000.
Figure 20 shows the amount of data transmitted by XGos-
sip in each round. Eventually, the bandwidth consumption
of XGossip per round reached 62 MB in each case. (For
500 peers, the bandwidth consumed in the first 9 rounds was
lower than that for 1000 and 2000 peers.) Overall, the band-
width consumption trends were very similar despite differ-
ent number of peers in the network.

# of Avg. # Avg. # of Avg. # of Avg. Total # of
peers of signa- signa- message messages

teams/ tures/ tures/ size/peer
peer peer team (bytes)

500 88.40 4024.25 45.52 1,160.18 880,480
1000 44.83 2040.81 45.52 1,265.64 880,480
2000 23.09 1051.2 45.52 1,244.91 883,500

Table 9 Teams, signatures, and messages

In order to explain the observed trends, we measured the
average number of teams a peer belonged to, average num-
ber of signatures gossiped by a peer eventually, and average
number of signatures per team. The results are shown in Ta-
ble 9. We observed that when the number of peers was dou-
bled in the network, a peer became a member of almost half
the number of teams and gossiped almost half the number of
signatures. The total number of teams was the same for each
case because the value ofk was fixed at 8 and peers gos-
siped the same datasetD2. Therefore, the average number
of signatures assigned to a team was identical.

We also measured the average size of a gossip message
transmitted by a peer and total number of messages exchanged
in 20 rounds (Table 9). For 500 peers, the average message
size was slightly smaller – this was due to the lower band-
width consumption in the initial rounds of gossiping (Fig-
ure 20). The total number of messages was almost identical,
because, in a round, each peer sent one message for each
team it belonged to. The total amount of data transmitted is
the product of the average message size and total number of
messages. This explains why the bandwidth consumption of
XGossip was very similar for 500, 1000, and 2000 peers.

Next, we present the results for the accuracy of cardi-
nality estimation. Figure 21 shows the percentage of queries
estimated by XGossip under 20% relative error at different
rounds forn = 500, n = 1000, andn = 2000. We tested
all the 753 XPath queries. In each case, the accuracy of es-
timation improved as the number of rounds increased and
reached a maximum of 92% by round 20. Essentially, the
quality of estimates produced by XGossip was tolerant to the
increase in the number of peers in the network. This is be-
cause, in XGossip, the convergence speed of the frequency
estimate of document signatures depends on∆ instead ofn.
(See Theorem 3.) However, the time taken to send a mes-
sage during a gossip round will increase asn increases – the
DHT requiresO(log(n)) hops to route a message to a peer.

A curious reader may ask why the accuracy of cardi-
nality estimation after 5 rounds was noticeably better for
n = 2000 than forn = 500 or n = 1000, although∆
was the same. (Also forn = 2000, the accuracy after 10
rounds was slightly better than the others.) This happened
because of the way we set up the peers to publish the doc-
uments inD2. (See Section 8.3.) The total frequency of a
signature inD2 was partitioned differently in each setting:
Whenn was higher, more peers published a particular sig-
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Fig. 22 Accuracy of cardinality estimation by XGossip forQ3 by
varying the # of peers (∆ = 8, k = 8)

nature and therefore, held smaller fractions of the total fre-
quency before the beginning of the initialization phase of
XGossip. This led to a more even partitioning of the signa-
ture’s frequency among team members during the initializa-
tion phase (Algorithm 3) and therefore, more team members
were likely to have that signature in their lists before the be-
ginning of the execution phase of XGossip.

Recall that in XGossip, each peer can be a member of
multiple teams and therefore, will maintain a separate listfor
each team that it belongs to. For the results in Figure 21, we
calculated the percentage of lists across all peers that didnot
contain any signature at the end of the initialization phase.
The values were 19.85%, 15.84%, and 9.91% forn = 500,
n = 1000, andn = 2000, respectively. This validates our ar-
gument that whenn was higher, the total frequency of a sig-
nature was more evenly partitioned across team members.

The variation in the initial distribution of signatures af-
fected how quickly the signatures and their frequencies dif-
fused through team members during the execution phase.

Whenn = 2000, peers were closer to convergence after 5
rounds than whenn = 500 or n = 1000. This resulted in
noticeably better accuracy of cardinality estimation after 5
rounds forn = 2000.

Next, we report the accuracy of cardinality estimation
for different query sets at different rounds. In Figure 22(a),
we first show the trend for query setQ3. Despite different
number of peers in the network, the percentage of queries
in Q3 estimated with relative error under 10% was more
than 91% after round 5 and reached 100% after round 20.
Figure 22(b) shows the average of the mean absolute rela-
tive error for queries inQ3 after 5, 10, and 20 rounds. No-
tice that the trends in Figure 22 are consistent with those
in Figure 21. We also averaged the accuracy of cardinality
estimation over three runs and the results are shown in Fig-
ures 22(c) and 22(d).

Figure 23 shows the accuracy of cardinality estimation
of XGossip on query setsQ1 throughQ5 for n = 500,
n = 1000, andn = 2000, respectively. Figures 23(a), 23(b),
and 23(c) show the accuracy after 5 rounds. Figures 23(d),
23(e), and 23(f) show the accuracy after 20 rounds. (The
accuracy after 10 rounds is shown in Appendix B.) As be-
fore, XGossip estimated a higher percentage of queries with
a relative error of under 10% as the number of rounds in-
creased. It estimated query sets with higher value ofpmin

with higher accuracy. For all the three cases,i.e., 500, 1000,
and 2000 peers, after 20 rounds, XGossip estimated 100% of
the queries inQ3, Q4, andQ5, and about 96% of the queries
in Q2, and about 60% of the queries inQ1, with a relative
error of under 10%.

One may wonder if the accuracy of cardinality estima-
tion obtained by XGossip is statistically significant and is
not obtained by chance. To verify this, we ran XGossip four
times with 2000 peers on datasetD2. Each time, the DHT
overlay network was set up on a different set of EC2 in-
stances. (This changed the Chord ids that peers mapped to.)
Table 10 shows the accuracy of cardinality estimation of
XGossip after 20 rounds, measured as the percentage of queries
estimated with relative error under 10%, on each query set
for four different runs. The mean (µ) and standard deviation
(σ) of the accuracy are also shown in the table. ForQ1 and
Q2, there was a slight variation in percentages across differ-
ent runs, but for the other query sets there was no variation.
This indicates that convergence of XGossip is statistically
significant and does not happen by chance. Note that in ear-
lier rounds, we can expect more variation across runs when
the convergence has not occurred yet.

Results for 4000 and 8000 peers.Now we report the results
of XGossip forn = 4000 andn = 8000. Table 11 shows
how the signatures and teams were distributed across peers,
the number of messages, and the average message size ex-
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Fig. 23 Accuracy of cardinality estimation achieved by XGossip for500, 1000, and 2000 peers

Query % of queries withrǫ < 0.1
set Run 1 Run 2 Run 3 Run 4 µ σ

Q1 59.97 55.98 59.97 59.82 58.93 1.97
Q2 96.91 95.79 96.91 96.63 96.56 0.53
Q3 100 100 100 100 100 0.00
Q4 100 100 100 100 100 0.00
Q5 100 100 100 100 100 0.00

Table 10 Statistical significance of the accuracy of cardinality estima-
tion by XGossip (n = 2000, ∆ = 8, k = 8)

changed during gossip. As expected, by doubling the num-
ber of peers, the load on each peer was almost halved.

Figures 24(a) and 24(b) show the accuracy of cardinal-
ity estimation of XGossip on query setsQ1 throughQ5 with
4000 and 8000 peers, respectively, after 20 rounds. As be-
fore, XGossip estimated query sets with higher value ofpmin

with higher accuracy. For both 4000 and 8000 peers, XGos-
sip estimated 100% of the queries inQ3, Q4, andQ5, and
about 97% of the queries inQ2, and about 59% of the queries
in Q1, with a relative error of under 10%.

Figure 24(c) shows the amount of data transmitted by
XGossip in each round. For 8000 peers, the bandwidth con-
sumed was slightly higher; we attribute this to the fact that
fewer signatures are compressed in each round, thereby re-
ducing the compression ratio. The average message size for
8000 peers was higher than that for 4000 peers and this sup-
ports our reasoning. (See Table 11.)

# of Avg. # Avg. # of Avg. # of Avg. Total # of
peers of signa- signa- message messages

teams/ tures/ tures/ size/peer
peer peer team (bytes)

4,000 13.14 598.24 45.52 1,283.09 885,220
8,000 6.50 295.78 45.52 1,424.40 880,800

Table 11 Teams, signatures, and messages

8.9 Churn and Failures

In this section, we report how XGossip performed in the
presence of churn and failures, including peer crashes.

8.9.1 Varying the Degree of Churn

A recent study by Stutzbachet al. [79] showed that the ma-
jority of peers in a P2P network are long-lived peers and the
remaining peers are short-lived and join and leave the net-
work at a high rate. It also showed that the session lengths
of peers fitted well into log-normal and Weibull distribu-
tions. We designed an experiment based on these observa-
tions to study the behavior of XGossip under varying de-
grees of churn.

We set up the network with 8,000 (long-lived) peers.
During the execution of XGossip, we varied the number
of short-lived peers that would join and leave the network.
We set the number of short-lived peers to 0%, 5%, 10%,
and 15% of the network size (i.e., the number of long-lived
peers). The session lengths of short-lived peers followed a
log-normal distribution withµ = 0 andσ = 0.25 and the
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Fig. 24 Accuracy of cardinality estimation and bandwidth consumption by XGossip forn = 4000 andn = 8000 (∆ = 8, k = 8, l = 10)

Degree of churn Undelivered + Wrong-team
# of short-lived donot-care messages (%)

peers (%) messages (%)

0 (0%) 1,641 (0.18%) 4,182 (0.47%)
400 (5%) 4,393 (0.49%) 3,500 (0.39%)

800 (10%) 8,061 (0.91%) 3,542 (0.40%)
1200 (15%) 12,818 (1.45%) 4,654 (0.53%)

Table 12 Number of undelivered, donot-care, and wrong-team mes-
sages in XGossip under varying degrees of churn (n = 8000, k = 8,
∆ = 8, after 20 rounds)

round when a short-lived peer joined the network was picked
randomly between 1 and 20.

We calculated (a) the number of undelivered and donot-
care messages, (b) the number of wrong-team messages, and
(c) the accuracy of cardinality estimation. Table 12 shows
the sum of the number of undelivered and donot-care mes-
sages under varying degrees of churn. As expected, when
more short-lived peers joined the network, more donot-care
messages were observed. Note that in the implementation of
XGossip, we avoided the disturbance to mass conservation
due to undelivered and donot-care messages, but did not do
so for wrong-team messages. Still, XGossip achieved high
accuracy of cardinality estimation after 20 rounds. The re-
sults are shown in Figure 25. Table 12 also shows the num-
ber of wrong-team messages. Although wrong-team mes-
sages were not consumed, they caused negligible disturbance
to mass conservation as their count was under 0.55% of the
total number of gossip messages.

8.9.2 Varying the Number of Peer Crashes

We studied the behavior of XGossip by allowing peers to
crash during gossip. Note that XGossip cannot preserve mass
conservation when peers crash, because the tuple lists of
these peers will be permanently lost. We set up the network
with 8000 peers and picked a subset from these peers at ran-
dom, containing 5%, 10%, and 20% of the network size,
respectively. In one scenario, which we callS1, each peer
(in the selected subset) crashed in a round between 1 and
10, picked randomly. In another scenario, which we callS2,

each peer (in the selected subset) crashed in a round between
11 and 20, picked randomly. In Table 13, we report the ac-
curacy of cardinality estimation by XGossip after 20 rounds
for settingsS1 andS2. This table shows the percentage of
queries in the entire query set (containing 753 queries) that
were estimated with relative error below 20%. It also shows
the accuracy achieved by XGossip when none of the peers
crashed (92.56%). As expected, the accuracy dropped when
more peers crashed because of higher disturbance to mass
conservation. The accuracy was slightly higher when peers
crashed in later rounds as this caused lower disturbance to
mass conservation.

# of peers % of queries
that crashed (rǫ ≤ 0.2)

(%) settingS1 settingS2

0 (0%) 92.56%
400 (5%) 89.38% 90.44%
800 (10%) 81.41% 82.20%
1600 (20%) 80.35% 81.27%

Table 13 Accuracy of cardinality estimation achieved by XGossip in
the presence of peer crashes (n = 8000, k = 8, ∆ = 8, after 20
rounds)

8.10 Summary of Main Results

We summarize the main results obtained from our perfor-
mance evaluation.

– XGossip was superior to VanillaXGossip: it converged
faster, consumed significantly less bandwidth, and scaled
on larger datasets than VanillaXGossip. This is because
of the divide-and-conquer strategy in XGossip.

– XGossip obtained high accuracy of cardinality estima-
tion on large number of peers. LSH enabled XGossip to
do effective load balancing among peers, and the exper-
imental results were consistent with the theoretical anal-
ysis. As expected, query sets with higher value ofpmin

were estimated with higher accuracy.
– Compression yielded significant reduction in the band-

width consumption of XGossip, as it was able to com-
press similar signatures effectively.
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Fig. 25 Accuracy of cardinality estimation achieved by XGossip under varying degrees of churn (n = 8000, k = 8, ∆ = 8, after 20 rounds)

– Finally, XGossip tolerated reasonable degrees of churn
during execution and still achieved high accuracy of car-
dinality estimation. However, when peers crashed during
gossip, there was higher disturbance to mass conserva-
tion and this lowered the accuracy of cardinality estima-
tion achieved by XGossip.

9 Handling Value Predicates in XPath Queries

XGossip (and VanillaXGossip) can be extended to handle
XPath queries with value predicates. Consider the document
d1 shown in Figure 1(a) and its SSG in Figure 2(a). The
signature scheme proposed inpsiX [67] captures values in
a document by summarizing them under the corresponding
element name in the SSG. For example, if a book had mul-
tiple prices, then the price values are summarized using a
histogram and the histogram is stored with an idp6 corre-
sponding toprice. The histograms are stored along with
the signature of the document.

During gossip, the tuple list will contain signatures along
with their histograms. While merging tuple lists, we merge
the histograms of identical signatures when updating their
frequencies. (A special multiset does not contain any his-
togram.) For example, consider signatures1 in Figure 5.
When computing the new sum and weight fors1, we will
also merge the histograms ofs1 from T1, T2, andT3, and
store it along withs1 in Tm.

Consider an XPath query//book[price > 10]. To
estimate its cardinality, we first determine the setR, which
contains the signatures in the network that are supersets of
the signature of//book/price. For each signature inR,
we use its histogram to estimate the frequency of the value
predicateprice > 10. We compute the sum of the fre-
quency of the value predicate on all the signatures inR to
obtain the desired cardinality estimate.

10 Conclusions

We have developed a novel gossip algorithm called XGos-
sip for Internet-scale cardinality estimation of XPath queries
over distributed semistructured data. The design of XGos-
sip is inspired by the Push-Sum protocol. For effective load

balancing and reducing bandwidth consumption, XGossip
employs: (i) a divide-and-conquer strategy by applying lo-
cality sensitive hashing and (ii) a compression scheme for
compacting document summaries. XGossip was evaluated
on Amazon EC2 using a large heterogeneous collection of
XML documents. XGossip produced high quality cardinal-
ity estimates and was efficient in bandwidth usage. The em-
pirical results were consistent with the theoretical analysis
of XGossip. We also reported the behavior of XGossip in
the presence of churn and failures, including peer crashes.

Acknowledgements This work is supported in part by the National
Science Foundation Grant No. 1115871, a grant from University of
Missouri Research Board, and Amazon Web Services (AWS) Educa-
tion Research Grant.

References

1. U.S. National Health Information Network (NHIN) and
Open Source Health Information Exchange (HIE) Solutions.
http://www.hoise.com/vmw/07/articles/vmw/LV-VM-01-07-
29.html.

2. Amazon S3 Availability Event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html.

3. caBIG Architecture Workspace: Common Query Lan-
guage SIG, Summary and Initial Recommendations.
https://cabig.nci.nih.gov/archive/SIGs/Common%20Query%20Language/
ArchWSQuery%20SIGRecomdF2F %20March05.ppt.

4. DXQP - Distributed XQuery Processor.
http://sig.biostr.washington.edu/projects/dxqp/.

5. Project Voldemort: Reliable Distributed Storage. Invited talk at
ICDE 2011, http://project-voldemort.com/.

6. Redis. http://redis.io.
7. Summary of the HIPAA Privacy Rule.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/index.html.
8. The Cancer Biomedical Informatics Grid.

https://cabig.nci.nih.gov/.
9. The Healthcare Enterprise Repository for On-

tological Narration (HERON). Available from
http://informatics.kumc.edu/work/wiki/HERON.

10. Amazon Elastic Compute Cloud (EC2), 2010.
http://aws.amazon.com/ec2/.

11. S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun.
XML Processing in DHT Networks. InProc. of the 24th IEEE Intl.
Conference on Data Engineering, Cancun, Mexico, Apr. 2008.



24 Vasil Slavov, Praveen Rao

12. A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating
the Selectivity of XML Path Expressions for Internet Scale Ap-
plications. InProc. of the 27th International Conference on Very
Large Data Bases, pages 591–600, San Francisco, CA, 2001.

13. M. Bawa, T. Condie, and P. Ganesan. LSH Forest: Self-tuning
Indexes for Similarity Search. InProceedings of the 14th Interna-
tional Conference on World Wide Web, pages 651–660, 2005.

14. M. Bender, S. Michel, P. Triantafillou, and G. Weikum. Global
Document Frequency Estimation in Peer-to-Peer Web Search.In
Proceedings of WebDB, 2006.

15. N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the Spread
of Viruses on the Internet. InProc. of the 16th Annual ACM-SIAM
Symposium on Discrete algorithms, pages 301–310, 2005.

16. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay,
J. Robie, and J. Simeon. XML path language (XPath) 2.0 W3C
working draft 16. Technical Report WD-xpath20-20020816,
World Wide Web Consortium, Aug. 2002.

17. K. Birman. The Promise, and Limitations, of Gossip Protocols.
Operating Systems Review, 41(5):8–13, 2007.

18. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie,
and J. Simeon. XQuery 1.0: An XML Query Language W3C
working draft 16. Technical Report WD-xquery-20020816, World
Wide Web Consortium, Aug. 2002.

19. A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath
Lookup Queries in P2P Networks. Inthe 6th annual ACM
Intl. Workshop on Web Information and Data Management
(WIDM’04), pages 48–55, Washington, DC, Nov. 2004.

20. S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algo-
rithms: Design, Analysis and Applications. InINFOCOM 2005,
pages 1653–1664, 2005.

21. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan,
R. T. Ng, and D. Srivastava. Counting Twig Matches in a Tree. In
Proc. of the 17th International Conference on Data Engineering,
pages 595–604, Heidelberg, Germany, 2001.

22. E. Curtmola, A. Deutsch, D. Logothetis, K. K. Ramakrishnan,
D. Srivastava, and K. Yocum. XTreeNet: Democratic Community
Search. InProc. of the 34th VLDB Conference, pages 1448–1451,
Auckland, New Zealand, 2008.

23. F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a dht for low latency and high throughput. InProc.
of the 1st Conference on Symposium on Networked Systems De-
sign and Implementation, San Francisco, California, 2004.

24. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value Store. InProc.
of 21st ACM SIGOPS Symposium on Operating Systems Princi-
ples, pages 205–220, Stevenson, Washington, 2007.

25. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithmsfor
Replicated Database Maintenance. InProc. of the 6th Annual
ACM Symposium on Principles of Distributed Computing, pages
1–12, 1987.

26. D. Fenstermacher, C. Street, T. McSherry, V. Nayak, C. Overby,
and M. Feldman. The Cancer Biomedical Informatics Grid
(caBIG). InProc. of IEEE Engineering in Medicine and Biology
Society, pages 743–746, Shanghai, China, 2005.

27. M. Fernandez, T. Jim, K. Morton, N. Onose, and J. Simeon. DXQ:
A Distributed XQuery Scripting Language. In4th International
Workshop on XQuery Implementation Experience and Perspec-
tives, 2007.

28. D. K. Fisher and S. Maneth. Structural Selectivity Estimation for
XML Documents. InProc. of the 23th IEEE Intl. Conference on
Data Engineering, pages 626–635, Istanbul, Turkey, 2007.

29. P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms
for Data Base Applications.J. Comput. Syst. Sci., 31(2):182–209,
Sept. 1985.

30. J. Freire, J. R. Harista, M. Ramanath, P. Roy, and J. Simone.
StatiX: Making XML Count. InProc. of the 2002 ACM-SIGMOD
Conference, Madison, Wisconsin, June 2002.

31. L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating
Data Sources in Large Distributed Systems. InProc. of the 29th
VLDB Conference, Berlin, 2003.

32. A. Ganesh, L. Massoulie, and D. Towsley. The Effect of Network
Topology on the Spread of Epidemics. InINFOCOM 2005, pages
1455–1466, 2005.

33. L. Garces-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller,
and K. W. Ross. Data Indexing in Peer-to-peer DHT Networks. In
Proc. of the 24th IEEE Intl. Conference on Distributed Computing
Systems, pages 200–208, Tokyo, Mar. 2004.

34. Georgia Koloniari and Evaggelia Pitoura. Content-Based Rout-
ing of Path Queries in Peer-to-Peer Systems. InProc. of the 9th
Intl. Conference on Extending Database Technology, pages 29–47,
Crete, Greece, 2004.

35. C. Georgiou, S. Gilbert, R. Guerraoui, and D. Kowalski. On the
Complexity of Asynchronous Gossip. InProc. of the 27th ACM
Symposium on Principles of Distributed Computing, pages 135–
144, Toronto, Canada, 2008.

36. A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate Range
Selection Queries in Peer-to-Peer Systems. InConference on In-
novative Data Systems Research (CIDR), 2003.

37. P. Haghani, S. Michel, and K. Aberer. Distributed Similarity
Search in High Dimensions using Locality Sensitive Hashing. In
Proc. of the 12th International Conference on Extending Database
Technology, pages 744–755, 2009.

38. M. Haridasan and R. van Renesse. Gossip-Based Distribution Es-
timation in Peer-to-Peer Networks. InProc. of the 7th Interna-
tional Conference on Peer-to-Peer Systems, Tampa Bay, Florida,
2008.

39. T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluat-
ing Strategies for Similarity Search on the Web. InProc. of the
11th international conference on World Wide Web, pages 432–442,
Honolulu, Hawaii, 2002.

40. Y. Hu, J. G. Lou, H. Chen, and J. Li. Distributed Density Esti-
mation Using Non-parametric Statistics. InProc. of 27th Inter-
national Conference on Distributed Computing Systems (ICDCS),
pages 28–36, June 2007.

41. P. Indyk and R. Motwani. Approximate Nearest Neighbors:To-
wards Removing the Curse of Dimensionality. InProc. of the
13th ACM Symposium on Theory of Computing, pages 604–613,
Dallas, Texas, 1998.

42. M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-Based Aggre-
gation in Large Dynamic Networks.ACM Transactions on Com-
puter Systems, 23:219–252, August 2005.

43. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Random-
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for Estimating Document Frequencies in Unstructured P2P Net-
works. Information Systems, 36(3):579–595, 2011.

58. N. Ntarmos, P. Triantafillou, and G. Weikum. StatisticalStruc-
tures for Internet-Scale Data Management.The VLDB Journal,
18(6):1279–1312, 2009.

59. T. Pitoura and P. Triantafillou. Self-Join Size Estimation in Large-
scale Distributed Data Systems. InProc. of the 24th IEEE Intl.
Conference on Data Engineering, Cancun, Mexico, April 2008.

60. B. Pittel. On Spreading a Rumor.SIAM Journal on Applied Math-
ematics, 47(1):213–223, 1987.

61. N. Polyzotis and M. Garofalakis. XCluster Synopses for Struc-
tured XML Content. InProc. of the 22th IEEE Intl. Conference
on Data Engineering, page 63, Atlanta, GA, Apr. 2006.

62. N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity Estima-
tion for XML Twigs. In Proc. of the 20th IEEE Intl. Conference
on Data Engineering, Boston, MA, March 2004.

63. M. Ramanath, L. Zhang, J. Freire, and J. R. Haritsa. IMAX:Incre-
mental Maintenance of Schema-Based XML Statistics. InProc.
of the 21st International Conference on Data Engineering, pages
273–284, Tokyo, Japan, 2005.

64. P. Rao, S. Edlavitch, J. Hackman, T. Hickman, D. McNair, and
D. Rao. Towards Large-scale Sharing of Electronic Health
Records of Cancer Patients. InProc. of 1st ACM International
Health Informatics Symposium, pages 545–549, Arlington, VA,
2010.

65. P. Rao and B. Moon. SketchTree: Approximate Tree Pattern
Counts over Streaming Labeled Trees. InProc. of the 22th
IEEE Intl. Conference on Data Engineering, pages 80–91, At-
lanta, Georgia, Apr. 2005.

66. P. Rao and B. Moon. An Internet-Scale Service for Publishing and
Locating XML Documents. InProc. of the 25th IEEE Intl. Con-
ference on Data Engineering, pages 1459–1462, Shanghai, China,
March 2009.

67. P. Rao and B. Moon. Locating XML Documents in a Peer-to-Peer
Network using Distributed Hash Tables.IEEE Transactions on
Knowledge and Data Engineering, 21(12):1737–1752, December
2009.

68. P. Rao, T. K. Swami, D. Rao, M. Barnes, S. Thorve, and P. Natoo.
A Software Tool for Large-Scale Sharing and Querying of Clinical
Documents Modeled Using HL7 Version 3 Standard. InProc. of
2nd ACM International Health Informatics Symposium, Miami,
FL, 2012.

69. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
Scalable Content-Addressable Network. InProc. of the 2001 Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications, pages 161–172, San Diego,
CA, 2001.

70. C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. DistributedXQuery.
In Proc. of the Workshop on Information Integration on the Web,
pages 116–121, 2004.

71. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Ob-
ject Location and Routing for Large-Scale Peer-to-Peer Systems.
In Proc. of the IFIP/ACM Intl. Conference on Distributed Systems
Platforms (Middleware 2001), Heidelberg, Germany, Nov. 2001.

72. C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A
Self-Organizing XML P2P Database System. InIntl. Workshop
on Peer-to-Peer Computing and Databases, Greece, 2004.

73. D. Shah. Gossip Algorithms.Foundations and Trends in Network-
ing, 3(1):1–125, 2009.

74. D. Shah. Network Gossip Algorithms. InIEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3673–3676, 2009.

75. G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient Processing
of XPath Queries with Structured Overlay Networks. InThe 4th
Intl. Conference on Ontologies, DataBases, and Applications of
Semantics, Aiga Napa, Cyprus, Oct. 2005.

76. V. Slavov and P. Rao. Towards Internet-Scale Cardinality Estima-
tion of XPath Queries over Distributed XML Data. InProc. of
the 6th International Workshop on Networking Meets Databases
(NetDB), Athens, Greece, 2011.

77. W. W. Stead and H. S. Lin. Computational Technology for Effec-
tive Health Care: Immediate Steps and Strategic Directions. The
National Academies Press, Washington D.C., 2009.

78. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. InProc. of the 2001 ACM-SIGCOMM Conference,
pages 149–160, San Diego, CA, Aug. 2001.

79. D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-peer
Networks. InProceedings of the 6th ACM SIGCOMM conference
on Internet measurement, IMC ’06, pages 189–202, Rio de Janer-
iro, Brazil, 2006.

80. The Chord/DHash Project. Available from
http://pdos.csail.mit.edu/chord/.

81. The Niagara Project. http://www.cs.wisc.edu/niagara/.
82. UW XML Repository. www.cs.washington.edu/research/xmldatasets.
83. Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating Answer Sizes

for XML Queries. InProc. of the 8th International Conference on
Extending Database Technology, pages 590–608, Prague, 2002.

84. XML.org. Available from http://www.xml.org/xml.
85. Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang

and Peter Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM Trans. Database Syst.,
28(4):467–516, 2003.

86. N. Zhang, M. T. Ozsu, A. Aboulnaga, and I. F. Ilyas. XSEED:Ac-
curate and Fast Cardinality Estimation for XPath Queries. In Proc.
of the 22th IEEE Intl. Conference on Data Engineering, page 61,
Atlanta, GA, 2006.

87. Y. Zhang and P. A. Boncz. XRPC: Interoperable and Efficient
Distributed XQuery. InProc. of the International Conference on
Very Large Data Bases (VLDB), Vienna, Austria, September 2007.

88. B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J.Kubi-
atowicz. Tapestry: A Resilient Global-scale Overlay for Service
Deployment.IEEE Journal on Selected Areas in Communications,
22(1):41–53, Jan. 2004.



26 Vasil Slavov, Praveen Rao

Appendix A

Theorem 2

Givenn peersp1, . . . , pn, let a signatures be published by somem
peers with frequenciesf1, . . . , fm, wherem ≤ n. With at least prob-
ability 1 − δ, there is a roundto = O(log(n) + log(1

ǫ
) + log(1

δ
)),

such that in all roundst ≥ to, at peerpi, the relative error of the
estimate of the average frequency ofs, i.e., 1

n

∑
m
i=1 fi, is at mostǫ.

Proof.
In this proof, we show that VanillaXGossip does not violate “mass

conservation” and therefore the proof for Push-Sum holds for Vanil-
laXGossip. Without loss of generality, suppose only one signatures
exists in the network and a peerp is observed. Thenp has either pub-
lisheds or has not.

Case 1:Supposep has not publisheds. Supposep knows this fact,
and starts with a sum and weight (0,1). Suppose in roundt, p receives
(fs, w) wherefs > 0 such that in all the previous roundsp has only
received messages from those peers that have not publisheds. Suppose
(0, w

′

) be the sum and weight in roundt−1 atp. Thenp will compute
its new sum to befs + 0 and weightw + w

′

and sendsfs+0
2

and
w+w

′

2
to another peer. Now VanillaXGossip resembles Push-Sum and

mass conservation is preserved and the proof of Push-Sum holds.
But if p does not know the fact thats exists, and uses the place-

holder⊥ and starts with (0,1) as the sum and weight for this place-
holder signature. Suppose we replay the actions up to roundt. Now in
roundt, p receives(fs, w) wherefs > 0. Now the sum and weight
based on⊥ will be (0, w

′

) in roundt− 1 atp. Peerp will compute its

new sum to befs +0 and weightw+w
′

and sendsfs+0
2

and w+w
′

2
to another peer. So even whenp does not know about the existence of
s, it can arrive at the right sum and weight in roundt to guarantee mass
conservation.

Case 2:Supposep has publisheds. Without loss of generality,
suppose in roundt, p receives the placeholder signature with(0, w

′

)
from some peerq. This means that so farq has received messages from
peers that do not know abouts to begin with. Thenp computes the sum
and weight asfs +0 andw+w

′

. This would be the same if the peers
that have sent a message toq (includingq) until roundt−1, started with
(0,1) for signatures if they assumed thats existed in the network. Then
mass conservation is guaranteed and the proof of Push-Sum holds.

From cases 1 and 2, we can conclude that for anys, mass conser-
vation holds in VanillaXGossip and therefore, the proof of Push-Sum
holds.

Theorem 3

Givenn peersp1, . . . , pn in a network, let a signatures be published
by somem peers with frequenciesf1, . . . , fm, wherem ≤ n. Sup-
posepi belongs to a team that gossipss after applying LSH ons. Let
∆ denote the team size. With at least probability1−δ, there is a round
to = O(log(∆) + log(1

ǫ
) + log(1

δ
)), such that in all roundst ≥ to,

at peerpi, the relative error of the estimate of the average frequency
of s, i.e., 1

∆

∑
m
i=1 fi, is at mostǫ.

Proof. Supposehs = (hs1, ..., hsk) denotes the output of LSH
ons. Without loss of generality, consider the teamhsi. During initial-
ization, any peer that published an XML document whose signature is
s, will send(s, (f,w)) to a member ofhsi. At the end of the initial-
ization phase, mass conservation holds fors w.r.t. teamhsi. This is
because the average of the frequency ofs across all the members of
teamhsi is the true average, and the sum of weights fors is∆. During
the execution phase,s is gossiped by the members of teamhsi and
mass conservation is preserved like in VanillaXGossip due to the use

of the special multiset⊥hsi
. Now the situation is identical to Vanil-

laXGossip except that the number of peers involved in computing the
average is∆. Hence the above theorem holds.

Theorem 4

Given an XPath queryq, VanillaXGossip can estimate the cardinality
of q with a relative error of at mostrǫ and a probability of at least
(1− δ) in O(log(n) + log(1

ǫ
) + log(1

δ
)) rounds.

Proof.
From Theorem 2, we know that the frequency of a signature in

R can be estimated with a relative error of at mostǫ and confidence
(1− δ) in O(log(n) + log(1

ǫ
)+ log(1

δ
)), wheren denotes the num-

ber of peers in the network. In VanillaXGossip, the frequencies of r
signatures inR is used to compute the cardinality estimate ofq, and
therefore, the total relative error is at mostrǫ.

Theorem 5

Given an XPath queryq, supposeqmin denotes the minimum similar-
ity betweenq’s signature and a signature inR. XGossip can estimate
the cardinality ofq with a relative error of at mostrǫ and a probability
of at leastα · (1 − δ

′

) in O(log(∆) + log(1
ǫ
) + log( 1

δ
′ )) rounds,

whereα = 1 − (1 − qlmin)
k, andk and l denote the parameters of

LSH.
Proof.
From Theorem 2, we know that the frequency of a signature in

R can be estimated with a relative error of at mostǫ and confidence
(1 − δ

′

) in O(log(∆) + log(1
ǫ
) + log( 1

δ
′ )), where∆ denotes the

team size. In XGossip, the frequencies ofr signatures inR is used to
compute the cardinality estimate ofq, and therefore, the total relative
error is at mostrǫ.

The confidence of the estimate also depends on the propertiesof
LSH. Becauseqmin denotes the minimum similarity betweenq’s sig-
nature and a signature inR, the probability of finding all signatures in
R by contactingk teams at query time is at leastα = 1−(1−qlmin)

k,
wherek andl are the parameters of LSH. (Suppose a proxy signature is
used such that the minimum similarity between it and a signature inR
is pmin. Thenα = 1− (1− plmin)

k.) Therefore, the net confidence
is at leastα · (1 − δ

′

).

Corollary 1

XGossip can estimate the cardinality ofq with a relative error of at
mostrǫ and a probability of at least(1−δ) in O(log(∆)+ log(1

ǫ
)+

log( α
α+δ−1

)) rounds.
Proof.
To achieve the same confidence as VanillaXGossip,i.e., (1 − δ),

the following equations must hold:

(1− δ) = α · (1 − δ
′

)

∴ δ
′

=
α+ δ − 1

α
(1)

Therefore, XGossip achieves a relative error of at mostrǫ with a
probability of at least(1−δ) in O(log(∆)+log(1

ǫ
)+log( α

α+δ−1
))

rounds.
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Fig. 26 Accuracy of cardinality estimation achieved by XGossip after 10 rounds

Appendix B

Accuracy of Cardinality Estimation

Figure 26 shows the accuracy obtained by XGossip after 10 rounds for
500, 1000, and 2000 peers.


