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Abstract In this paper, we address the problem of cardi-most notably the concept of Distributed Hash Table (DHT)
nality estimation of XPath queries over XML data stored(e.g, Chord [78], Pastry [71], CAN [69], Tapestry [88], Kadem-
in a distributed, Internet-scale environment such as alarg lia [52]), has been embraced by key-value stores such as Dy-
scale, data sharing system designed to foster innovatiomamo [24], Cassandra [48], and Voldemort [5].
in biomedical and health informatics. The cardinality esti  The overwhelming success of XML, coupled with the
mate of XPath expressions is useful in XQuery optimizationpopularity of P2P systems, has led to research in index-
designing IR-style relevance ranking schemes, and $tatisting and query processing over XML data in a P2P environ-
cal hypothesis testing. We present a novel gossip algorithment [46,31,11,22,67]. One compelling use case for em-
called XGossip, which given an XPath query, estimates th@loying XML and P2P technologies is in the design of large-
number of XML documents in the network that contain ascale data sharing systems for biomedical and healthcare
match for the query. XGossip is designed to be scalable, defata. This is because of two reasons: First, it is suggested
centralized, and robust to failures — properties that asg-de that scalable clinical data sharing systems can be builgusi
able in a large-scale distributed system. XGossip employa P2P architecture [77]. Second, HL7 version 3, an XML
a novel divide-and-conquer strategy for load balancing antlased standard for representation and interchange ohhealt
reducing the bandwidth consumption. We conduct theoretieare data€.g, discharge summaries, lab reports), is becom-
cal analysis of XGossip in terms of accuracy of cardinalitying a standard for enabling semantic interoperability s&ro
estimation, message complexity, and bandwidth consumpsystems [54]. A large-scale data sharing system can foster
tion. We present a comprehensive performance evaluation ahprecedented innovations in areas such as cancer traatmen
XGossip on Amazon EC2 using a heterogeneous collectioand diagnosis. For instance, the Cancer Biomedical Infor-
of XML documents. matics Grid (caBIG) [26, 8] is a real world data sharing sys-
tem for collaborative e-science and is growing in popwarit
Selectivity/cardinality estimation is a classical taskltle
1 Introduction by query optimizers, for example, to decide the best join or-
der for a query. In this work, we address the task of cardinal-

We have witnessed a huge success of the P2P model of coigy estimation of XPath queries in a distributed environtnen
puting in the last decade. This has culminated in the develyhich is formally stated as follows:

opment of Internet-scale applications such as Kazaa, BitTo _ ) )
rent, and Skype. P2P computing has also become popularin Given an XPath expression (or query)estimate the
ecommerce and ebusiness and has led to the development of total number of XML documents in the network that

many Internet-scale systems. Innovationsin P2P computing COntain & match fog with provable guarantee on the
quality of the estimate.
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ing schemes. Another use case is in the design of a clinica
study, where one important criteria ke number of sub-
jects(i.e., participants) to be enrolled in the study. Given the
thrust towards building distributed data sharing systehs [
biomedical researchers can be quickly notified (through car
dinality estimation) whether sufficient samples are atdéla
for a study, without querying the network of distributedalat
sources. Today, there are tools being developed by the med-
ical informatics community to enable investigators to e&ssu
cohort discovery queries to know how many patients are
available for a clinical trial€.g, HERON [9]).

Many techniques have been developed for XML selec-
tivity estimation in a local/centralized environmeatq, XS-
KETCH [62], StatiX [30], IMAX [63], XCLUSTER [61],
XSEED [86]). These techniques estimate the result set size
of an XML query expression. Our goal is different in the
sense that we aim to estimate the number of XML doc-
uments that match an XPath query instead of the query’s
result set size. Furthermore, we target a distributed envi-
ronment, where XML documents are stored across a large
number of participating peers. While computing statistics
over structured data stored in an Internet-scale envirohme

has been addressed in the past [58,59], none has focused on

computing Internet-scale statistics for the XML data model

One straightforward approach would be to collect all the
XML documents in the network at any one peer and then ap-

We design a novel gossip algorithm called XGossip for
cardinality estimation of XPath queries in an Internet-
scale environment. XGossip relies on the principle of
gossip and exchanges concise summaries of XML docu-
ments among participating peers. The design of XGossip
is inspired by the Push-Sum protocol [45].

For effective load balancing and reducing bandwidth con-
sumption, XGossip employs: (i) a divide-and-conquer
strategy by applying locality sensitive hashing [41] and
(ii) a compression scheme for compacting document sum-
maries. As a result, a group of peers gossip only a por-
tion of the entire collection of XML document summaries
in the network, and this portion tends to contain similar
XML document summaries. This results in faster con-
vergence of cardinality estimates to their true values.

— We conduct theoretical analysis of XGossip in terms of

the accuracy and confidence of the cardinality estima-
tion, convergence, message complexity, and bandwidth
requirement.

We present a comprehensive performance evaluation of
XGossip in an Internet-scale environment using Amazon
EC2 [10]. We use a heterogeneous collection of XML
documents to evaluate the effectiveness of XGossip. We
show that the empirical results are consistent with the
theoretical analysis.

The remainder of the paper is organized as follows. We

ply existing techniques for XML selectivity estimation [62 Present the related work in Section 2, background and mo-
28,50]. Unfortunately, this approach will be prohibitiyel tivations in Section 3, the design of our gossip algorithms
expensive and would not scale. Another issue is that thé Section 4, the process of cardinality estimation of XPath
network may be dynamic where peers can join and |eavgueries in Section 5, the analySiS of our algorithms in Sec-
at any time. Under these circumstances, there are importafi@n 6, a discussion on how churn and failures affect our

design requirements for an effective cardinality estiorati

algorithms in Section 7, a comprehensive performance eval-

algorithm. First, the algorithm should be scalable and -operuation of our algorithms in Section 8, an extension to our
ate on a |arge number of peers. Second, it should be deceﬁlgorithms in Section 9, and our conclusions in Section 10.

tralized and not rely on any central authority. Third, it gltb

This article is an extension of a previous publication in

consume minimum network bandwidth and be robust to théhe6*" International Workshop on Networking Meets Databases
dynamism of the network. Fourth, it should provide prov-(NetDB), 2011 [76]. The new additions in this article in-

able guarantee on the quality of estimates.

In this work, we investigate how gossip algorithms can
be designed for XPath cardinality estimation. Gossip (& ep
demic) algorithms are attractive for large-scale distelu
systems due to their simplicity, scalability, decentrdina-
ture, ability to tolerate failures and the dynamism of the
network, and ability to provide probabilistic guaranteas.
show that designing a gossip algorithm for cardinality-esti
mation over XML data is a non-trivial task and introduces

clude (i) a compression scheme to reduce bandwidth con-
sumption (Sections 4.5), (ii) a comprehensive performance
evaluation (Section 8) to show that the empirical resukés ar
consistent with the theoretical analysis of the proposed go
sip algorithms and to study the impact of churn and failures
including peer crashes, and (iii) the proofs of theoremsglo
with new examples and figures.

2 Related Work

new challenges due to the very nature of the XML data
model. While Ntarmost al. [58] argue that gossip algo-
rithms may not be suitable for statistics generation due t%
high bandwidth requirement and hop-count, we show that
efficient gossip algorithms can indeed be designed.

The key contributions of our work are stated below.

2.1 Information Exchange and Aggregate Computation Via
ossip Algorithms

Gossip algorithms provide a means for communication, com-
putation, and information spreading [74,73]. Prior work on
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gossip algorithms have mainly focused on information ex- None of the above methods can be adapted in a straight-
change (or rumor spreading) [35,43,60,25,32,15] and conforward way to compute cardinality estimates of XPath qegeri
puting aggregates (and separable functions) [44,45,20,4%Zhis is because of the hierarchical nature of XML and the
56]. The essence of these algorithms lies in the exchandarge number of possible XPath patterns that can match a
of information or aggregates between a pair of peers (pickedocument. (More details are provided in Section 3.2.)
randomly if the peers form a complete graph or among neigh-
bors using a probability matrix assuming the peers form an
arbitrary graph). It has been shown that after a provably fio 3 statistics Computation over XML Data
nite number of rounds and a provably finite number of mes-
sage exchanges, the information has reached all the peers@4|ectivity estimation over XML data in a local environment
the aggregates (and separable functions) have convergedi@is been well studied. The following approaches were de-
the true value. signed to estimate the result set size of an XML query ex-
There are real-world systems that use gossip protocolgression such as a path expression or a twig pattern. Aboul-
Amazon S3 data centers use gossip protocols for spreadiggnaet al.proposed path trees and Markov tables to esti-
server state information [2]. Dynamo [24], Cassandra [48]mate the selectivity of simple XML path expressions [12].
and Redis [6] also utilize gossip protocols for informationChenet al. proposed a summary structure for estimating the
exchange among server nodes. selectivity of XML twig queries [21]. Wiet al.developed
the pH-join algorithm for complex XML patterns using po-
sition histograms [83]. Freiret al. proposed StatiX [30] for
summarizing XML data with schema information using his-
In the area of information retrieval, document frequeney estC9rams. Later Ramanagt al.extended StatiX to support

timation in a P2P network has received some attention. Beri{Pdates to XML repositories [63].
der et al.developed an approach for estimating the global ~Lim et al.used the feedback from the query execution
document frequencies using hash sketches [29] in a P2P n&0gine to develop an online approach for large XML reposi-
work [14]. This approach leveraged a DHT overlay network [ories [49]. Jiangt al. proposed Bloom Histograms to sum-
Neumayeret al.developed a hybrid aggregation techniqueMarize XML data for estimating the selectivity of XML path
based on hierarchical aggregation and gossip-based aggfXPressions. Subsequently, Polyzetial. developed the XS-
gation for estimating document frequencies in unstructure KETCH synopsis model and estimation framework to sup-
P2P networks [57]. port complex XPath expressions with both branching and
Recently, methods for statistics generation in largeescalvalue predicates [62]. Later they proposed XCLUSTER [61]
distributed networks have been developed for relatiortal.da t0 deal with heterogeneous content in XML documents.
Ntarmoset al. [58] developed algorithms for aggregates ~ Recently, Zhangt al.proposed XSEED [86] that built
(e.g, SUM, COUNT) and histograms (g, Equi-Width, Equi- @ small kernel of the XML data and incrementally updated
Depth histograms) by introducing the idea of Distributedthe synopsis based on the required space budget. Fisther
Hash Sketches built over a DHT. Pitowetal. [59] adapted ~ al- Proposed a new synopsis model based on lossy compres-
several self-join size estimation algorithnesy, bifocal sam- sion of XML documents that could be constructed in one-
pling, sample-count) designed for a centralized envirarime Pass, to support all the XPath axes [28]. Most recently, un-
to work in a P2P environment. They also developed a newike previous approaches that constructed a structural syn
technique using the Gini coefficient. opsis of XML data, Louwet al.developed a sampling based
A few gossip algorithms have been developed for statis@Ppproach to capture the tree structure and relationships be
tics computation in large-scale networks. Laleiial. [47]  tween nodes in XML documents [50].
developed gossip algorithms for computing frequent elemen  There has also been some work on cardinality estimation
The nodes in a network exchanged small-space synopsia.(&0ker streaming XML data [65,53]. These approaches lever-
sketches) of their data during gossip. The focus of this worlege sketching techniques to construct synopsis over XML
was mainly on the theoretical results. ldual. [40] devel- ~ Streams.
oped a distributed non-parametric density estimation-algo
rithm using a gossip protocol. This resource-constraihed a
gorithm achieved high estimation accuracy with small antoud Background and Motivation
of communication and storage overhead. Haridasanh [38]
developed a gossip algorithm where a node could estimaté well-formed XML document follows the syntax rules of
the distribution of values held by other nodes. The messagake XML specification and can be modeled as an ordered,
contained synopsis of data to reduce storage and bandwididibeled tree. XPath [16] is a query language for navigating
consumption. and selecting nodes in an XML document. XPath queries

2.2 Statistics Computation in a Distributed Environment
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<?xml version="1.0" encoding="ISO-8859-1"?>  <output> FOR $gene IN service
<books> for $e in doc("....")//books ("http: //cal::io .osu.edu/GeneService.wsdl") /Gene,
<book> where $elyear > 2000 9go IN service ]
<author>Mark Twain</author> return $eftitle ("1.1ttp ://cabio.osu. ?du/GeneOntologyServ:Lce .wsdl") /GeneOntology,
<title>The Adventures of Tow Sawyer</title> = ;o ut> $microarray IN service
P ("http://caarray.duke.edu/caArrayService.wsdl") /Microarray
<year>1998</year> LET Ssubiect := Smi / - t/subject
</book> (b) WHER::s ject := $microarray/experiment/subjec
<book>

$go/term='vacuole' AND $gene/goAcc=$go/acc AND
$gene/gbAcc=$microarray/data/geneld AND
count ($microarray/data[geneId=$gene/$gbAcc] /condition)>50

<author>C.S. Lewis</author>
<author>Pauline Baynes</author>

<title>The Chronicles of Narnia</titie> RETURN
< <output> R
year>2004</year> <title>The Chronicles of Naria  <subject>
<ed_ition>1</editior_1> <ftitle> <subjectId>{ $subject/lsid }</subjectId>
<price>$32.00</price> <loutput> <species>{ $subject/species }</species>
</book> <microarrayData>
</books> (c) { Smicroarray/data }
@) </microarrayData>
</subject>
J

Fig. 1 (a) XML documentd; . (b) XQuery queryg; . (c) Output ob-  Fig. 3 An XQuery query supported by caBIG
tained by executing; ond; .

0 Po L much smaller in size than the original XML documents [67]
° J bobks and therefore, by exchanging document signatures instead
;’O(’ks of actual documents, one can conserve bandwidth — a criti-
1‘ o cal resource in an Internet-scale environment.
book book
P75 S Ps P P2 Example 1Consider the document; in Figure 1(a) and
8 . . .
e . _ its Structural Summary Graph (SSG) in Figure 2(a). (The
author title  year edition price publisher language author

(a) Structural Summary Graph (b) SSG of another document SSG resembles a backward simulation of the XML docu-

(SSG) ofdy ment tree [55].) Each edge of the SSG is assigned an irre-
. ducible polynomial based on the path from the root of the
Fig. 2 Example SSG. As shown in the figurey, p1, ..., andpg are irre-

b d bwi A twi ) ducible polynomials assigned to the edges of the SSG. For
can be represented byig patterns A twig pattem is essen- example, the edge from book to author is assigned the poly-

tially a tree-like pattern with nodes represen_ting elerment nomial p, after hashing the path /books/book/author into
attributes, and values, and edges representing parddt-ché list irreducible polynomials. The signature of the docu-

or ancestor-descendant relationships. XQuery [18] is e-fun ment is constructed by computing the product of all the irre-

tional query language that subsumes XPath, and allows tl”l‘ﬁmible polynomials assigned to the edges of the 9%G,
creation of new XML content. Figure 1(a) and 1(b) show &he product oo, py andpg

well-formed XML documentd;) and XQuery queryd;),

respectively. Query, when executed on documeft will  Example 2Two different SSGs may contain common paths
output the title of all books with year greater than 2000. Thestarting from their respective roots. Consider the SSG show
outputis shown in Figure 1(c). in Figure 2(b). It has some common paths starting from the

root with the SSG in Figure 2(a). Therefore, the polynomials

po, p1, andp, are assigned to edges in both SSGs.
3.1 Signature Representation of XML Documents and

XPath Queries The presence of recursive element names in an XML
document causes cycles in its SSG and there can be mul-
Recently, Rao and Moon [67,66] developed a method teiple occurrences of an irreducible polynomial in the sig-
compactly represent XML documents for indexing and lo-nature [67]. In essence, a document signature can also be
cating XML documents in a P2P network. A document isviewed as a multiset of irreducible polynomials if the prod-
represented by its signature, which is essentially a produgict is avoided. For example, the signature of the XML doc-

of irreducible polynomials. These irreducible polynorsial umentd; in Figure 1(a) is equivalent to the multisgio, p1,
are carefully assigned to the edges of the Structural Suny,, ps, p4, ps, ps}-

mary Graph (SSG) of the document, so that the signature can

capture the document’s structural properties and content.

XPath query can also be mapped to its signature [67]. /8.2 Key Motivations

useful necessary condition of this signature represemtati

is thatif a document contains a match for a query, then theThe Cancer Biomedical Informatics Grid (caBIG) [26, 8],
query signature divides the document signatié]. An-  an initiative of the National Cancer Institute, exemplifees
other benefit of these document signatures is that they areal world data sharing system for collaborative e-science
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It has about 120 participating institutions across the US.

Consider the distributed XQuery query in Figure 3, which

is supported by caBIG. The quefinds all the expression

data where there are at least 50 conditions for genes found

in the vacuold3]. It performs joins across data exposed by

three data services, namely, Gene, GeneOntology, and Mi- Py
croarray. A more powerful query can be constructed wherein ﬁ

Overlay
network

the locations of the documents in the network are not ex-

plicitly specified. If a P2P architecture is used to make this

system scalable, then the above query can be processed in

two steps: First, we locate relevant XML documents based Ps

on XPath expressions in the query using prior techniques QA CardEst(/Genel/goAcc) = -

(e.g, XP2P [19], XPeer [72], multi-level bloom filters [34], . ‘

inverted index using document paths [31], hierarchy of inFig. 4 The system model is shown here. Peers in the network can pub-

d . t . 33 th-b di lish their XML documents. They continuously gossip with leather.
exes using query-to-query mappings [33], path-base N5t any time, any peer can perform the task of cardinalitynestion on

dex [75], KadoP [11]psiX [67,66], XTreeNet [22]). Next, an XPath query.

we apply existing distributed XQuery processing technique

(e.g, XQueryD [70], DXQ [27], DXQP [4], XRPC [87]).
a document, and the presence of axes such as /I’ (ancestor-
One may wonder if a P2P architecture is suitable fordescendant) in the queries.

sharing sensitive biomedical and healthcare data (e.g., pa Although gossip algorithms seem simbldealing with

tient data). Due to legal constraints (€.g., HIPAA [7]) a-fed XML introduces several challenges. First, if our gossipalg

erated model is typically used so that a data provider haﬁthm begins to execute when a query is posed, like in Push-
complete ownership of its data and can employ local acce '

Bum [45], then we will have to wait for a finite number of

control policies [1]. A P2P architecture can provide simi- . . . .
. rounds before the cardinality estimate is available. On the
lar benefits as shown by CDN [64,68]. In CDN, the actual . L . .
other hand, if gossip is continuously run in the background,

clinical documents (in XML) are never exchanged or trans"[hen it is infeasible to gossip all XPath patterns due torthei
ferred across the network. Only authorized peers are atlowe

. ) very large number — we expect a heterogeneous collection
tojoin CDN’ l_mhke open P2P systems such as Kazaa whergf XML documents in a distributed environment. Second,
membership is not controlled.

our algorithm should scale with increasing number of XML
In this work, we aim to estimate the number of XML documents and peers in the network and yield effective load

documents in a network that contain a match for an XPatlalancing. Third, network bandwidth is a critical resource

query. Though this estimate does not provide the size of thi@ an Internet-scale environment. Therefore, our gossip al

result set of an XPath query, a query optimizer can selegorithm should rely on exchanging a finite number of small

appropriate query plans based on how the relevant docized messages — an essential property of a good gossip al-

ments are distributed in the network. For instance, considegorithm [17].

the query in Figure 3. If we know the cardinality estimate of

XPath expressions such as /Gene/goAcc, /Genefterm=vac-

uole’], /Microarray/data[geneld]/condition, etc., a fieular

join ordering can be chosen; other applications include IR-

style ranking schemes and tools for identifying if suffidgien 4 Our Proposed Approach

subjects are available for clinical trials.
In this section, we present the Push-Sum protocol introdluce

To the best of our knowledge, we believe our work isp,, Kempeet al. [45]. We draw inspiration from Push-Sum
the first to qddrgss the problem of cardl_nallty estimation of, 4 present a gossip algorithm called VanillaxGossip for
XPath queries in an Internet-scale environment. One Maypa, cardinality estimation. Subsequently, we employ a
wonder if a technique such as Distributed Hash Sketches [5},ye| divide-and-conquer approach to overcome limitation
designed for structured data, can be adapted for XML datgy\anillaxGossip and present an improved algorithm called
This would require us to first map each XPath pattern thay cossip. We also provide the theoretical analysis of Vanil-
appears in an XML document into one dimensional spacq,x Gossip and XGossip. For convenience, notations com-

However, enumerating all possible XPath patterns is comsqn1y used in subsequent discussions are listed in Table 1.
putationally expensive and can result in a very large num-

ber of patterns due to the hierarchical nature of XML, the
presence of many different element and attribute names in® The proofs and analyses, however, are mathematicallyaigor
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| Notation | Description | Theorem 1 (Push-Sum Protocol [45])Suppose there are

n number of peers in the network n peerspy, ..., p, in a network. Each peey; has a value

S}Si fsr'g;‘ag:]f Ooff? X“:'];td‘r’;“me”t x; > 0. With at least probabilityl — 8, there is a round
s uency signatu B 1 1 .

D number of distinct document signatures in the network to = O(ZOQ(R) + 109(5) + 199(6))’ such that m_ all rounds
7 a particular round during gossip t > t,, at peerp;, the rellatlve error of the estimate of the

I fi sum maintained by a peer during gossip average value}; Z?:l x; IS at most.

w, W; weight maintained by a peer during gossip

L special multiset used by peers in VanillaxGossip The proof is based on an important propertynséss
T tple list maintained by a peer during gossip conservation45]. What this means is that in any round,
A number of peers in a team or team size .

I special multiset used by peers of a team in XGossig  the average of the sums on all the peers is the true aver-
5 confidence parameter age, and the sum of the weights on all the peers is always
€ accuracy parameter _ _ _ n. To compute the “sum’i.e, Z?:l x;, Push-Sum is run
k.U | tuning parameters for locality sensitive hashing (LSH) with only one peer starting with a weight of 1 and the rest of
hs vector of values produced by LSH on signature the peers starting with a weight of 0 [45]. Push-Sum is able
«@ probability that there is at least one team (of peers) S . .

that gossips two given signatures after applying LSH {0 Préserve mass conservation in certain cases of failute an
R set of distinct document signatures that are divisible ~ churn. These are discussed in Section 7.
by a query signature (or result set of a query)
r |R|
Qmin minimum similarity between a query signature
and a signature i 4.3 VanillaXGossip
Pmin minimum similarity between a proxy signature
and a signature if We draw inspiration from Push-Sum to develop our gossip

Table 1 Commonly used notations algorithms VanillaXGossip and XGossip. We select Push-
Sum as the basis due to several reasons. Push-Sum relies
4.1 System Model on uniform gossip where peers form a complete graph with

respect to connectivity. Because we assume that peers are

We assume that peers are connected using a DHT overl&pnnected through a DHT-based structured overlay network,
network such as Chord [78]. (See Figure 4.) As in a typicaPnY Peer can contact any other peer @log(n)) hops).

P2P network, a peer owns a set of XML documents. A peel addition, Push-Sum is synchronous, but peers can fol-
is said to “publish” those documents that it wishes to sharéoW their local clocks and the convergence holds as long
with others in the network. The original documents residedS Mass conservation is preserved [45]. (The analysis of a
at the publishing peer’s end. Peers continuously gossip witsynchronous model is simpler than that of an asynchronous
each other. At any time, any peer can perform the task ofodel [45].) In both VanillaXGossip and XGossip, we also
cardinality estimation on an XPath query. During this pro-COmpute “average” instead of “sum” because these algo-

cess, a peer will lookup its local state or contact a few othefithms run in the background and to guarantee that only one
peers to Compute the Cardina'iw estimate. peer will set its We|ght to 1 and the rest of them to O, will

require sophisticated distributed synchronization.

4.2 Push-Sum Protocol

Algorithm 1: Initialization phase in VanillaXGossip

global: T - sorted tuple list
Suppose a P2P network haspeers and each pegr has proc InitGossip(p)

a non-negative valug;. Suppose we want to estimate the ;| ets,, ..., s, denote the distinct signatures published by peer
“average”i.e., %2?21 x;. In the Push-Sum protocol [45], 2 Compute the frequency; of eachs; published byp

each peer maintains a susnand weightw; in roundt. In 3 foreachs; do _

round 0, each peer; sends(z;, 1) to itself. In any round ~ * end'”sert(si’ (fi, 1)) into ™

t > 0, a peer computes the new sum (or weight) by adding 5 insert(L, (0, 1)) into T

the sum (or weights) of the messages it receives. It sendsend

half of the sum and half of the weight to a randomly selected

peer and the remaining half of the sum and weight to itself.

In a particular round, the ratio of the current sum and weight  Next, we describe VanillaXGossip. Rather than gossip-
is the estimated average. Push-Sum employs uniform gosig XPath patterns in XML documents, peers gossip signa-
sip where a peer can contact any other peer during a gossipres of XML documents. In subsequent discussions, we use
round — in terms of connectivity, the peers form a completehe terms “multiset” and “signature” interchangeably. et
graph. denote the frequency of a signatureVanillaXGossip has
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two phases: initialization and execution phases. In the ini™ Ajgorithm 2 ; Execution phase of VanillaxGossip
tialization phase as shown in Algorithm 1, each peer creat€s proc RunGossip(p)
a sorted list of tuple§” using only its local state. Each tu- 1 LetTi,T5,..., Tr denote the lists received in the current

ple is of the form(s, (fs,1)), wheres is a signature of an round by peep
2 Ty  MergeLists(T1,Ta, ...,TR)

XML document publishgd by the peer.ajiplis the ngmber 3 SendT,, to a random pees,. and the participating peer
of XML documents having the same signatur@nd1 is the end

initial weight like in Push-Sum. (Two different XML docu- .

ments can have the same signature [67].) A tdplg(0, 1)) proc MergeLists(T1, Tz, ..., Tr)

. . . . . 4Ty <0
is also added td@’, where L is a special multiset. The list . (™ 11k do

T is kept sorted by the first item of the tuples(, s), which 6 cr + Ty.begin()

serves as a primary key. The special multiseis consid- end

ered to be the largest of all possible signatures when aidere 7 While end of every listis not reacheitb
This means that in an/, (L, (0, 1)) will appear as the last Smin - min{er.s, .., cr.s}

9 sumy < 0; sum., < 0;
tuple. 10 forr=1toRdo
We use the following notations: T.begin(), T.end(), and 11 if ¢r.8 = smin then
T.next() are used to iterate over T. For a tuple T, c.s, 12 sumy < sumy + cr.f
de.w refer to individual elements in the tupl@[s] - Sul & SUMw o+ Crt0
c.f andc.w . _ pie. 14 ¢r +— Tr.next()
denotes the tuple whose signature.is else
) ] 15 sumyg < sumy + Tr[L].f
Remark 1A tuple with multisetL plays the role of a place- 16 Sumy, < suma, + Ty [L]w
holder in VanillaXGossip for multisets (or signatures)ttha end
are not yet known to a peer during a gossip round. This pre- end . _
serves the important property of mass conservation like inl7  NSert(smin, (=55, =5%)) into T,
Push-Sum. end

18 return T,

After initialization, peers begin the execution phase and end
perform the steps in Algorithm 2 by invoking the procedure
RunGossip(). During a gossip round, a peer first collectsthe signatures,. It is not found in7, andT5. Therefore,
the lists received during that round including the one that i(fb, wy) and(f., w,.) are used fronT, andT3, respectively,

sent to itself. It then merges the lists to updéfe, w) of  to compute the new sum and weight forand their values
each tuple. After merging, the peer sends the merged |i$ire:sumf2 — % andsum,, = wetwetwe, O

with halved frequencies and weights to a randomly selected ?
peer, and sends another copy of that list to itself. (We selecrpaorem 2 (VanillaxGossip)Givenn peersp1, . . . , pn, let

arandom peer by picking arandom Chord id and routing the, signatures be published by some peers with frequencies

message to the succes?softhat id.) _ _ 1y fm, Wherem < n. With at least probabilityi — 4,
The merging process is unique to VanillaXGossip andpere is a round, = O(log(n) + log(%) 4 log(%)), such

is described by procedur® ergeLists() in Algorithm 2. a4 in all roundst > ¢, at peerp;, the relative error of the

Because the lists are sorted by the primary key, the mergssiimate of the average frequencysofe, 1 7 | f;. is at
ing phase can be completed in linear time. The minimumy, q.. "

key/multiset is selected and its updated sum and weight are

computed across all the received lists. If a list does not conP’roof. See Appendix A for the proof. O

tain the key, then the sum and weight_bfare used. (The

sum value forL is always 0.) In any round, for a tuple Discussion.VanillaXGossip differs from Push-Sumin a few

(s, (f,w)) in the merged listl,,,, an estimate of the aver- aspects. To illustrate these, suppose Push-Sum is used for

age of the frequency ofin the network |s£ cardinality estimation of XPath queries. Push-Sum will be

initiated when an XPath query is posed at a peer. This peer

Example 3Figure 5 shows an example of how the mergingyyi|| inform other peers about the query. Once a peer be-

of three listsTy, T, andT5 is done using\ergeLists().  comes aware of the query, it will compute the cardinality

Consider the signature,. It is found inTy, T, andT3.  estimate of the query on its local documents and gossip this

We can compute the new sum and weightdogs follows:  estimate with other peers. After a finite number of rounds,

sumy, = DALAL andsum,, = witiptes, Consider he average of the cardinality estimate is available. On the
2 A successor of a ke Chord is a peer mapped to a Chord ID other hand, VanillaXGossip runs continuously in the back-

that is the closest to the key (greater than or equal to) inltekwise ~ 9round and peers gossip the aggregate values of all the sig-
direction [78]. natures that they are aware of and are oblivious to the cgierie
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Tl T2 T3 Tm
su(fow)  SulfaWa) s (fywy) . sy.(sum, sum,)

) (fovie) NG MergelLists(...)

W2y \lgy c’ _—
S2:(T2: Wy S3:(l5:Ws ¢ S5.(sum,,sum, )
U (fawa) [ (fpowp) hs

S3,(sum,,sum, )

fa: fb = fc =0 0 (Sum4’5U”}v4)
sum = (fi+5+f,)/2 sum = (f+5+0)/2
sum, = (Wy+ws+w,)/2 sum, = (Wy+Wg+we)/2 : -
sum = (f,+,+,)/2 sum,= (1;+,+)/2 (a) Initialization phase (b) Execution phase
sum,,= (Wa+wy+w)/2 sum, = (Wt Wy +wp)/2 Fig. 6 Example for XGossip

Fig. 5 Merging of lists during VanillaXGossip onto the Chord DHT ring. We use the notatiento denote

, . . e vector of hash values produced by LSH onNe say
that may be posed. VanillaXGossip requires a placeholdertg =~ -~ i
ybep ! 'prequ P %&_\ths = (hs1,. .., hsx) definesk teams fors. Each hash

ensure mass conservation and to guarantee convergence si

ilar to Push-Sum. When a query is posed, a peer will Iookuﬁ)/alue denotes the id of a team. Suppaséenotes the size

its local state and compute the cardinality estimate. Werdef of each team - Then f.o'f any team (with i), we calculate
the Chord ids describing that team to bkg;, hs; + 1 X

the discussion on cardinality estimation until Section 5. %7 b2 2120 o hat(A—1)x 220 1. (The addition
operation will cause the result to wrap around the ring.)
4.4 XGossip: A Divide-and-Conquer Approach The peers that are successors of the Chord ids defining a
team, constitute the members of the team. These peers gos-

One may notice that in VanillaXGossip, the tuple [iStat  sip only a fraction of the distinct signatures in the network
each peer eventually contains all distinct signaturedisais  Also, they will exchange messages with only the members
in the network. This is inefficient in practice due to limited of their team during a gossip round. Given two signatures
amount of main memory available at each peer. Also the sizaith similarity p, the probability that there is at least one
of messages can grow very large during gossip. To overconteam that gossips both signatures is (1 —p')*. (We usex
this limitation of VanillaXGossip, we employ a novel divide to denote this expression in later sections.) This is an impo
and-conquer strategy usitagality sensitive hashin@.SH).  tant property of LSH that XGossip builds on. Thus similar
We call this improved algorithm XGossip. In XGossip, eachsignatures are gossiped by the same team with high prob-
peer will gossip only a provably finite fraction of distinct ability. This increases the chances of finding all the signa-
multisets in the network. The benefit of XGossip over Vanil-tures that are required to estimate the cardinality of antiXPa
laXGossip is three-fold: Firstly, each peer will consunssle query.
memory. Secondly, each peer will consume less bandwidth ) i .
during gossip. Thirdly, the convergence of XGossip will re_ExampIe 4Consider th? DHT ring shown in Figure 6(a).
quire fewer number of rounds. Supposé: = 3 and a signature produces hash valués

The concept of LSH, introduced by Indyk and Motwani [4(1 ,d)’_h2 (bll_Je)’ andhs (greer_1) after applying LSH. Each
has been employed in many domains, including indexin cam IS OT size 4. The team is shown by a dotted square
high dimensional data and similarity searching [13,5Hsi 2% I this example, peeys;, p», ps, andp, are members
ilarity searching over web data [39] and in P2P networks [39(,)f ha. =
37], ranges queries in P2P networks [36], and so forth. For
similarity on sets based on Jaccard index, LSH on a seh The divide-and-conquer approach in XGossip raises an
be performed as follows [39,13]: Pigkx [ random linear interestingissue. Recall thatin VanillaXGossip, a sirggle-
hash functions of the forma(z) = (ax 4+ b) mod p, wherep  cial multisetL, required for mass conservation, is used by
is a prime, and: andb are integers such that< a < pand  all peers in the network and is sent to a peer picked at ran-
0 < b < p. Computeg(s) = min({h(z)}) over all items dom during a gossip round. But in XGossip, a peer cannot
in the set as the output hash value folt is established that maintain one special multiset. Rather a peer maintains one
given two sets; andsq, Prob(g(s1) = g(s2)) = ':S:i} special multiset per team to which it belongs to. It sends tha
Each group of hash values can be hashed again using arspecial multiset in gossip messages to those peers that are
other hash functiorf (-). Thusk hash values are output for members of that team. In fact, a peer may belong to more
a set. than one team. For a tealn its special multiset is denoted

In XGossip, we apply LSH on a document signature. Weby 1 .
selectf(-) to be the SHA-1 hash function. This way the hash ~ XGossip also has two phases. The first phase is the ini-
values output by LSH for a signature are 160 bits and magalization phase and each peer invokes the procedure
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Algorithm 3 Initialization phase of XGossip

Algorithm 4 : Execution phase of XGossip

global: T - tuple list

proc InitGossipSend(p)

1
2
3

Let T be initialized as in VanillaXGossip
foreachc € T andc.s #.1 do

hs < LSH(c.s)

proc RunGossip(p)

1 LetTy,T>,...,Tr denote the lists received in the current
round by peep

2 Group the lists based on their teams by checking their specia
multisets. Suppose each group is denoted:hy

3 foreach groupG; do

4 foreach hs; € hs do P : . )
5 Create a team; and pick one id say for the team g E/Ieetr%e tzgrl]littz erizrsg:: ordlr)g taMergeLists(:)
m ged list
atrandom and sen.s, (c. f, c.w)) andhs; to the 6 CompactT’,, to save bandwidth /* Optimization */
peer responsible far according to the DHT protocol 7 Leths,--- , ha denote the Chord ids of the team
end 8 Pick an indexj € [1, A] at random such thatis not the
end successor oh,;
end 9 SendT,, to the peer that is the successorhgfand top
proc InitGossipReceive(p, (s, (f,w)), h) er?crl]d

10
11
12

/* Keep one tuple list per team while receiving */
[* p is the peer that receives the message */
if T}, does not existthen createT},
if s is a regular multiset and, [s] existsthen
Update the frequency in the tuple by addifig
end
else ifs is a regular multiset and7, [s] does not existhen
Insert(s, (f,w)) into Ty,
if L;, does not exist i}, then
Insert(Lp, (0,1)) into Tp;
InformTeam(p, Ly)
end
end
else ifT},[s] does not existhen
Insert(s, (f,w)) into Th;
InformTeam(p, s)
end

end
proc InformTeam(p, Ly,)

16

17
18

[* p is the peer executingnitGossip Receive */
Supposéhs, - -
ha

Let peerp be the successor af;

Send(Lp,, (0, 1)) to the successor @f(; mod A)+1

end

-, h A denote the other Chord ids for the team

list for that team with the corresponding special multiset.
addition, it contacts the next peer of the team (in clockewis
direction along the DHT ring) and sends only the special
multiset, along with its initial sum and weighe., (0,1). A
peer on receiving a special multiset for a team forwards it
to the next member of the team similarly. (The procedure
InformTeam() in Algorithm 3 performs this task.) Note
that the special multiset is only forwarded when a peer karn
about a team it belongs to for the first time.

Example 5Consider Figure 6(a). Supposgandps receive

a signatures during the initialization phase (solid black ar-
rows). Each informs the next peer in the team with,
(black dotted arrows). Whepy and p, learn for the first
time about teank,, they forwardl,, to their next peers in
teamh; (red dotted arrows). O

During the execution phase of XGossip, a peer groups
the messages based on the teams from which they arrive.
These are exactly the teams that the peer became aware of
during initialization. For each group/ergeLists() is in-

InitGossipSend() shown in Algorithm 3. Each peer cre- 104 The merged list for a team is then sent to a randomly

ar:esxtl\r;leL Zorted list O_f t;:plég t[))?scre]ddon_ th_? S|gn:;11tur_e§_o|f selected peer belonging to that team. The steps involved in
the ocuments it has published similar to the initial- y¢ o6 cytion phase are described in Algorithm 4.

ization phase of VanillaXGossip. For each tuple, the peer

applies LSH on the tuple’s signature and credteésams. Example 6Consider Figure 6(b). Because pegfsps, ps,

For each team, the peer randomly picks one of its Chord id@ndp4 are the members of the team, they exchange mes-

and sends the tuple to the successor of that id along with th&ages belonging to that team during the gossip phase. In a

team id. particular round, peers may exchange messages as shown
When a peer receives a message during initialization viY solid black arrows. L

InitGossipReceive() in Algorithm 3, it checks if the sig-

nature in the message is a regular multiset, a document Theorem 3 (XGossip)Givenn peersp,...,p, in a net-

signature. If so, it updates its list along with the specialin  work, let a signatures be published by some peers with

tiset for that team. (Note that a peer maintains a separafeequenciesfi, ..., f,, wherem < n. Suppose; belongs

tuple list for each team that it belongs to.) But if a peer doeso a team that gossipsafter applying LSH ors. Let A de-

not receive any message during initialization, then it doesiote the team size. With at least probability- 4, there is a

not know which teams it belongs then how can itinitial-  roundt, = O(log(A) + log(2) + log($)), such that in all

ize its special multisetWe propose the following: When a roundst > t,, at peerp;, the relative error of the estimate

peer receives a signature and ateamid, it initializes thletu of the average frequency sfi.e., % ot fi, is at mosk.
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Proof. See Appendix A for the proof. o ow. ZZl |si]), whereW denotes the number of signa-
tures that were compressed. Algorithm 6 describes the steps
In Theorem 2, the average of the frequency of a signamyolved during decompression of a compressed signature to
ture is computed over the total number of peers, whereas igbtain the original uncompressed signatures. The time com-
Theorem 3, the average is computed over the team size. plexity is O(X - W), whereR denotes the cardinality of the
union of the uncompressed signatures (or multisets).

4.5 Optimizing Bandwidth Usage in XGossip

Algorithm 5: Compression of signatures
Because network bandwidth is a critical resource in anh@er— nput; list of signatures; each signature is sorted
scale environment, we aim to reduce the size of messages Output: A compressed signature
exchanged during gossip. The application of LSH enables Proc CompressSignatures((si, ..., sw))
similar signatures to be gossiped by the same team with high; ?0: :1 110 W do
probability. Thus it is more likely that signatures contadn 5 idz]i] < 0
in atuple list (sent to a particular peer during a gossip ddun end

have high similarity. We design a scheme to compact sig- 4 While end of every signature is not reached

natures, which is more effective when signatures have high® 7Vl < min{si[idz{l]], .., sn[idz[W]]}
N 6 u; < minVal

similarity. 7 for i=1toWdo

o . . . 8 if s;[idz[i]] = minVal then
Definition 1 (Compressed Signature)Given a set of sig- ¢ Set thei*” bit of B; to 1
naturessy, ..., sy, its compressed signature is a multiset 10 idx[i] < idz[i] + 1
{(ul, Bl), ce (UN, BN)}, Where{ul, C. 7UN} =51 Us2 U else

11 Set theit” bit of B; to 0

.-~ U sy, i.e, the union of the multisets, and eaéhj is a

bitmap of sizelV. The following properties hold. end

end
a) Consider anyu,, B;). Ifthe j*" bitof B; is 1, thenu; €~ 2 J<J+1
. . end
s; although there may exist@, such thatt # 7 and 13 retumn {(us, Bu), ..., (u;—1, B;_1)}
u = u; and thej*" bit of By, equals 0. end
b) Foranyk, 1 < k < W, suppose we construct a multiset
M by examining theé!" bit of By, ..., By, whereM =
{u; | k' bit of B; equals 3. ThenM = s;.

Example 7Suppose there are 3 signatures to comprgss:  Algorithm 6: Decompression of signatures

= {a, b, c, d, d,d,e,f, g, h, h, h,}hsz = {b, c,c, cd,d, Input: acqmprelssed signaturz _

e, f, f, f, h, h}, and53 - {a, b, c, d, d, e, f, g, h, h,}h The Output: original unpompresse signatures
compressed signature is denoted{lbg, 101), (b,111), (c, f;%? aeii?xzzsszgmmres({(ul’ Bu),.- (u, Br)})
111), (¢, 010), (c,010), (d,111), (d, 111), (d,100), (e, 2 si 0

111), (f, 111), (f, 010), (f, 010), (g, 101), (h,111), (h, end

; ; . 3 fori=1toXdo
111), (h,101), (h,100)}. Consider (a101) in the com . for j=1to W do

pressed signature. The bitmaf1 indicates that only the if jt" bit of B; equals lthen
first and third signatures contain ‘a’. Suppose we constructg Appendu; to the end ofs; so thats; is sorted
a multiset using the"? bit of every bitmap (as described in end
Definition 1). This multiset will be{b, ¢, c, ¢, d, d, e, f, f, f, end
h, h} and is identical tos,. end
7 return (s1,...,Sw)
end

Next, we present the algorithms for compression and de-
compression of signatures. Each signature is sorted so that
compression can be done by reading the input signatures
just once. When a compressed signature is produced, tieCardinality Estimation of XPath Queries
pairs are kept sorted by the key. Let s[i] denote the”
element in the sorted signatuseAlgorithm 5 describes the Inthis section, we describe the process of cardinalityresti
steps involved during compression. Because the input signéon of XPath queries using VanillaXGossip and XGossip.
tures are sorted, the union of the signatures can be comput®dhile in VanillaXGossip, the local state at a peer is suffi-
efficiently. During this process, the bitmaps are also genercient to produce the cardinality estimate, in XGossip, a few
ated. The time complexity of our compression algorithm ispeers are contacted during cardinality estimation.
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Tm @ p2
T
Tw@p n @ P
signature| (sum, weight)
So (foWo) Sy | (F13.W11) Tm @Ps
S1 (fwy)
s, () S3 | (f13.W13)
S5 (faws) S3 | (F33:W33)
Sy (f4.w,)
(a) VanillaXGossip (b) XGossip

Fig. 7 Tuple lists at peers used for cardinality estimation

5.1 VanillaXGossip

Let us begin with VanillaXGossip. Suppose a quelig is-
sued at peer a. We search the merged Ii#},, atp to find
every tuple(s, (fs,w)), such that is a superset of's signa-
ture. (Note that testing for the superset relationship betw

Example 9As in Example 8, let; andss be the signatures
that are supersets gfs signature in the network. Suppose
k = 3. We apply LSH ony's signature to obtain 3 team ids,
say{hi, he, hs}. Letp1, p2, andps denote a randomly se-
lected peer from tearh,, ho, andhg, respectively. We send
¢’s signature to peers;, p2, andps. Figure 7(b) shows the
tuple lists maintained by these peers. Pgereturns tuples
(s1, (f11,w11)) and(ss, (f13,w13)). Peems does not return
any tuple. Peep; returns the tupléss, ( f33, ws3)). Because
there are two tuples with identical signaturies, s3, we dis-
card one of them. Suppoés;, (f13,w13)) is discarded. The
cardinality estimate of is given byA x (L1 4 J22)

w11 w33

Based on the property of LSH, we know that with proba-
bility o = 1—(1—p")* there is at least one team that gossips
two different signatures with similarity. During cardinality
estimation, we use the output of LSH on a query signature
to find, for each signature that is a superset of a query sig-
nature, at least one team that gossips it. It is possible that

a document signature and a query signature, when the signiste similarity between the query signature and a matching

tures are viewed as multisets, is equivalent to the divigibi
test between them [67].) We compuE% over all such

document signature is low. For example, if the query has
one or two location steps but the matching document con-

tuples and multiply the sum hyto produce the desired car- tains many different elements and attributes. In such a situ
dinality estimate of;.3> We can assume that a good estimateation, we may miss some document signatures completely,
of n is known via Push-Sum. By solely looking at the local and obtain a poor quality cardinality estimate. To overcome

state ofp, we have computed the cardinality estimate.of

this situation, we propose the idea gp@xy signature

Example 8 Suppose there are two document signatures, namefinition 2 Suppose a query is posed over documents con-

s1 and sz, in the network that are supersets ¢ signa-
ture. Consider the tuple list atshown in Figure 7(a). The
qualifying tuples from the tuple list args1, (f1,w;)) and

forming to an XML Schema' (or a DTD). A proxy signa-
ture is the signature of any document that conforms$'to
and contains the maximum number of distinct elements and

(s3, (f3,ws3)). The cardinality estimate afis given byn x attributes inS.

(Lo 4 L2y, O . L L . .
w1 w3 During cardinality estimation of a query, LSH is applied
on a proxy signature to identify the teams, instead of on the
query signature. The intuition is that the proxy signatuile w
5.2 XGossip have higher similarity with the matching document signa-

_ . tures for the query. So it is more likely to find all the neces-
Now let us focus on XGossip. Suppoges posed at a peer  sary signatures by contacting the teams generated from the
p. Let by denote the output of LSH og's signature. For  proxy signature. As before, the query signature is sent to a

each teant,; (1 < ¢ < k), we pick a team member at randomly selected member of each team.
random and seng’s signature anch,; to it. The selected

team member (or peer) scans its sorted tuple list for team
hg: and returns evergs, (fs, w)) such that is a superset of 6 Analysis of VanillaXGossip and XGossip
¢’s signature. Two or more tuples, each returned by a differ-
ent peer, may have identical signatures. When this happedé‘, this section, we present the asymptotic analysis of Vanil
we retain one of the tuples (selected at random) and discaf@XGossip and XGossip and compare their accuracy, con-
the rest. Finally, we compufg’ fE over the tuples received fidence, convergence, message complexny, and bandwidth
from k peers (after discarding tuples as needed) and multconsumption. The results are summarized in Table 2.
ply by A to produce the desired cardinality estimate .ofn
XGoss_ip, We_contack peers during cardinality estimation 6.1 Accuracy, Confidence, and Convergence
and this require®(k log(n)) hops.

3 We compute “average” instead of “sum” and therefore, we imult SUPPOSE? denotes the set of document signatures that are
ply by n, which is the number of peers in the network. divisible by a query signature. Let= |R)|. To fairly com-
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[ Metric [ VanillaXGossip | XGossip | 7 Churn and Failures
Accuracy re re
Confidence (1-9) (1—-9) : : L )
Convergence O(iog(n) T log(L) Ollog () + log(X) Kempeet al.have discussed gfew fallure scenarios in Push
(# of rounds) Hog(1)) Hog (%)) Sum [45]. When a message is not delivered successfully to
Bandwidth O(nD) O(log(‘jj)kblm a peer during a g_o_ssip round, either_ becaggta_ it was lost or
Messages O(n log(n)) O(loginkaAlog(A)) because the receiving peer crashed in the initial round, the

the sending peer will simply consume the message as if it
was never sent and update its local sum and weight to pre-
serve mass conservation. Note that if a peer crashes in the
pare VanillaXGossip and XGossip, we set the desired agnitial round, it is assumed to have not contributed any sum
curacy and confidence of cardinality estimationrtoand  and weight to the network.

(1 — ) for both the algorithms. We state the following the- s 5 peer decides to leave the network during gossip, it
orems and corollary. (See Appendix A for the proofs.) should do so in an orderly fashion by sending its sum and
weight to another peer to preserve mass conservation. If at
most 50% of the peers decide to leave in an orderly fashion,
then one extra round is needed for convergence [45]. In this
case, the average (or sum) computed by Push-Sum would
converge to the true average (or sum) before the peers left

Theorem 5 Given an XPath query, suppos@,,:, denotes the network. If a new peer joins the network during gossip,
the minimum similarity betweeyis signature and a signa- it may receive a gossip message from another peer. It is bet-
ture in R. XGossip can estimate the cardinality pfvith  ter to exclude the new peer from participating in the current
a relative error of at moste and a probability of at least 90ssip phase, because it may not know what type of aggre-

a-(1—3')in O(log(A) +1log(1) +109(6—1/)) rounds, where gate is being computed just by looking at the sum and weight
a=1-(1—-¢ . )* andk andl denote the parameters of in the message. So this new peer should discard the message

LSH. and the sending peer must consume the message. By design,
if a peer crashes unexpectedly during gossip, then mass con-

Corollary 1 XGossip can estimate the cardinalityqpfvith  servation will not be preserved.

a relative error of at moste and a probability of at least A few other scenarios can arise. The gossip interval may

(1—10)in O(log(A) +log(L) + log(555=)) rounds. be shorter than the network delay between two peers. Mes-
sages may be delayed. (Push-Sum does not require the rounds
to be synchronous.) In such a situation, mass conservation i

6.2 Message Complexity and Bandwidth Consumption  preserved after the messages have reached their destinatio

) ] ] _ So the convergence will be delayed. A peer does not send a
In VanillaXGossip, eventually all peers gossip every uBiqu q yjicate message on a failure; it simply consumes the mes-

signature in the network. Suppoge denotes the number g, g6 16 preserve mass conservation. The above scenarios ap-
of unique signatures. Therefore, the worst case bandW|dt‘t)*||y to both VanillaXxGossip and XGossip

consumed by each peer in a roundJéD), assuming that
the size of the longest signature is a small constant. Table
shows the worst case bandwidth per round considering
n peers. Similar to Push-Sum, the message complexity g

Van_:_IIaXGolssm '?(%(n lo.g(nl))t' first di th tsending peer consumes thiedelivered messagde preserve
0 analyze, 0SsIp, ‘et us TIrst discuss he property, <5 conservation. Similar to Push-Sum, VanillaXGossip

of consistent hashing in Chord [78]. Suppose thererare . L :
and XGossip cannot preserve mass conservation if a partic-
peers andX keys. Chord guarantees that with high proba-. P P Y vation i a part

ipating peer crashes during gossip.
bility each peer receives at mo%ktfl keys, wherep is P A gf]eF\)/v new issues arisz gi]n ouF; ossip algorithms. The
bound byO(log(n)) [78]. In XGossip, we have at mosD gossip aig :

team ids (or Chord ids). So each peer becomes the succes DOI;|T $ routing stabilization mechanism runs periodicatly i

for at mostO(%kD) teams. As there ard members © background to cope \.Nlth .Cha?”ges n the.netwerg,(
) log(n) o . failures, network partitioning, joining and leaving of pge
per team, there will be at moé(——kDA) distinct sig-

natures per team, which denotes the worst case bandwidths 15 Ap) takes 2 arguments: a key and a value. When invoked, it
consumption of a peer per round. Table 2 shows the worsises remote procedure calls (RPCs) to send the value to¢héhae is
case bandwidth per round consideringafieers. Given that the successor of the key. The underlying transport protiscaliable
each team in XGossip exchang@$Alog(A)) messages with features similar to TCP but optimized for high throughpnd low

S . " latency [23].
the overall message complexity is shown in Table 2. yI23]

Table 2 Comparison of VanillaXGossip and XGossip

Theorem 4 Given an XPath query, VanillaXGossip can
estimate the cardinality af with a relative error of at most
re and a probability of atleastl —¢) in O(log(n)-+log(1)+
log(%)) rounds.

VanillaXGossip and XGossip use Chord'easert API

send a message to a peer during a gossip rdu@adly
hen a peer receives a message successfully, the insert call
t the sender returns with a success status. On failure, the
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Itis possible for the successor of any of the Chord ids defin8 Performance Evaluation
ing a team to change temporarily or permanently during the
execution of XGossip. Then a message sent by a peer of the

team may be received by a peer who is activgly gossipingData- | #of | Avg. # Total AVQ. Avg. | Max.
but does not belong to the same team. We will call such a set | DTDs | of docu- # of docu- | docu- | docu-
messag@ wrong-team messag€he receiving peer should ments dOCLi' ment | ment | ment
. . . . ) per ments signa- size size
reject the message and notify the sending peer, which can DTD ture size | (bytes) | (KB)
then consume the message to preserve mass conservation. (bytes)
If a new peer joins the network during the execution o p, 11 190,809 | 2,098,000]| 114 1343 | 396
XGossip (or VanillaXGossip), it may receive a gossip mes{ D- 13 | 192,223 | 2,498,900 127 1330 | 39.6

sage from another peer. We will call such a messag@not-  Taple 4 Datasets
care messageBecause this new peer did not participate in
the initialization phase of the gossip algorithm, we exelud

it from participating in the current execution phas&his
peer should reject the message and notify the sending peg
which can then consume the message to preserve mass c

We conducted a comprehensive performance evaluation
both VanillaXGossip and XGossip and report the results
‘this section. We show that the results are consistent with
the theoretical analysis presented in Section 6. To highlig

servation. . . : ;
why gossip algorithms are a better choice, we implemented
_ _ an approach called Broadcast and compared it with our gos-
Scenario Can (sum, wt) Can disturbance sip algorithms. Broadcast is described in Section 8.7. We
pairs be consumed? be avoided? | t the behavi f XG . d h d fail
XGossip | Vanila- | XGossip | Vanilla: also report the behavior of XGossip under churn and fail-
XGossip XGossip ures, including peer crashes, in Section 8.9.
Undelivered msg. yes yes yes yes
Wrong-team msg|  yes — yes - 8.1 Implementation
Donot-care msg. yes yes yes yes
A peer crashes no no no no We implemented VanillaXGossip and XGossip in C++ us-

Table 3 Scenarios causing disturbance to mass conservation in-XGosIng the Chord package [80] and compiled the code using

sip and VanillaXGossip the GNU g++ compiler (version 4.0.2). In the implementa-
tion of VanillaXGossip and XGossip, we followed the steps
described in Section 7 to avoid disturbance to mass conser-
vation due to undelivered and donot-care messages. How-

Solely for the purpose of exposition, we introduce the . .

g S cever, for a wrong-team message in XGossip, although the

term “disturbance to mass conservation” to indicate the dif L ] . .
receiving peer discarded the message, the sending peer did

ference between the average of the sums held by the peers D

S . not consume the message. One may wonder if this caused

(considering all signatures) and the true average. The the- . . o :

substantial disturbance to mass conservation in XGossip:

orems stated in earlier sections assume that mass cons&- ) . .
L . . ladly this was not the case, because in our experiments,
vation is preserved, and therefore, there is no disturbanc

to mass conservation. Any scenario that does not preser\;ee number of wrong-team messages was a tiny fraiieq (

. . ; . .~ under 0.55%) of the total number of gossip messaes.
mass conservatiore(g, when peers involved in gossiping

crash) causes disturbance to mass conservation. It follows2 D q )
that the higher the disturbance, the lower the accuracy oq' atasets and Queries

frequency estimates_ of _signat_u res, and therefore, therIovaNe used two different datasets in the evaluation of Vanil-
the accuracy of cardinality estimation achieved by XGOSSIRaXGOSSip and XGossip. We generated the datasets using a

andlr:/?a::l?zgo\?vselps'ummarize the different scenarios tha ynthetic XML data generator from IBM and DTDs pub-
. ’ . . |ﬁhed on the Internet [81,82,84]. The characteristichef t
cause disturbance to mass conservation in XGossip andVagl . o
. o . atasets and document signatures are summarized in Table 4.
laXGossip. In XGossip, disturbances due to undeI|vered|,rwg'+r,\lote that dataseD is a subset of datasél,. We usedD
1 2 1

team, and donot-care messages can be av_0|ded i th_e Senc]lteorscompare VanillaXGossip, XGossip, and Broadcast. We
can consume the (sum, weight) pairs of signatures in those : o .

. ) sedD, to demonstrate an inherent limitation of VanillaX-
messages and the receivers can reject those messages (€x

. R . ossip — it suffers from large message sizes during gossip.
ceptfor undelivered messages). Similar is the case witil-Van P 9 g 99 P

laXGossip except that wrong-team messages do not arise. © If the number of wrong-team messages becomes large, then not
consuming them would cause higher disturbance to massrmatise.

5 The new peer can participate the next time the gossip aktgorit To avoid this, we can modify the implementation of XGossigon-
runs. sume these messages.
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We generated XPath queries for each DTD by using the Each peer followed its local clock during the execution
XPath generator from the YFilter project [85]. The queriesof VanillaXGossip and XGossip and the interval between
contained the wildcard *" and the ‘//’ axis. The total num- successive gossip rounds was fixed at 120 secs.
ber of queries was 753. For each query,, was at least

0.3. We crgqted 6 different query sets by .selectln?q quUerieST 7 T #ofECa | #of beers| ¥ of peers| # of documents

from the original set that had theif,;,, value in a particular | of peers | instances|  per picked published by

range as shown in Table 5. Recall that;,, (or i) is the in the instance | per DTD a peer

minimum similarity between a query signature (or a proxy| network ) Dy

signature) and a document signaturdiin.e., the result set () (1, 9)

of the quer 1000 20 50 500 2098.9, 99.1
query. 2000 20 100 1000 1049.5, 49.0

Table 6 Network setup and distribution of documents/iy for com-
paring Broadcast, VanillaXGossip, and XGossip

[ Query set] Value ofp.in | # of queries|

Qo [0,0.5) 101
Q1 0.5,1 652
Q> 0.6,1 356
03 07,1 300 Total # # of EC2 | #of peers| # qf peers| # of d_ocuments
Oa 08,1 577 o_f peers | instances|  per picked published by
05 0.9’ 1 26 in the instance | per DTD a peer
’ network (2) D»
Table 5 Query sets (n) (u, 0)
500 20 25 250 4997.8, 257.7
1000 20 50 500 2498.9, 99.1
2000 20 100 1000 1249.5, 49
o 4000 20 200 2000 624.7,24.5
8.3 Network Setup and Distribution of Documents 8000 20 200 2000 3123, 12.0

) . o Table 7 Network setup and distribution of documentsiin, for in-
We ran VanillaXGossip and XGossip in an Internet-scale engepth evaluation of XGossip

vironment using the Amazon Elastic Compute Cloud (EC2)

[10]. VanillaXGossip and XGossip were run on 20 EC2 in-

stances or virtual machines. (By default, EC2 allows at mosé'4 Evaluation Metrics
20 instances per user.) Each instance was a medium instance

with 2 virtual cores, 1.7 GB of RAM, 350 GB of d!Sk SPace, we compared VanillaXGossip and XGossip on three met-
and had modergte I/O performance. We ran all instances i (a) the accuracy of cardinality estimation, (b) the-co
the US East availability zone. vergence speed of the frequency of signatures, and (c) the

We used two separate setups for the evaluation of Vanilyandwidth consumption during gossip. Unless otherwigedfa
laXGossip and XGossip. We used the first setup to showanjllaxGossip and XGossip were run with compression
XGossip's superiority over VanillaXGossip and Broadcast.enapled to minimize the bandwidth consumption.
We used the second setup to conduct an in-depth evaluation For the accuracy of cardinality estimation, we calculated
of XGossip. the relative error of the cardinality estimate of queries. F

In each setup, we conducted the evaluation by establishhe convergence speed, we calculated the mean absolute rel-
ing a DHT overlay network witm peers. We ran an equal ative error (MARE) of the frequency estimate of document
number of peers on each EC2 instance. We distributed thgignatures. For the bandwidth consumption, we calculated
documents in a dataset as follows: We randomly picked the amount of data transmitted per round by all peers.
peers per DTD. We distributed the documents conforming We also evaluated XGossip by varying the total number
to each DTD uniformly across thosepeers. Each peer pub- of peers in the network and choosing different values for
lished all the assigned documents. the LSH parametek and the team sizeA). We fixed the

Table 6 shows the values of z, and the number of EC2 LSH parametet at 10 so thaty ~ 0 when two signatures
instanced used in the first setup. The mean and standard deave similarity less than 0.5. Recall thats the probability
viation of the number of documents published by a peer fothat there is at least one team that gossips two given sig-
datasetD; is also shown. Table 7 shows the valuesipt, natures. We measured the average number of teams that a
and the number of EC2 instanced used in the second setypeer belonged to, the average number of signatures gossiped
The mean and standard deviation of the number of docby a peer and by a team, and the average size of messages
ments published by a peer for dataBegtis also shown. Note exchanged during gossip. In addition, we calculated the to-
that dataseD; was not used in the second setup because tal number of messages exchanged across all rounds. We
was a subset abs. measured the amount of transmitted data per round and also
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evaluated the benefit of our compression scheme to reduce
the bandwidth consumption of XGossip.

600

peer pl —s—
peer p2 ---e---
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One may wonder how quickly do the signatures diffuse
through the network during gossip. Just for the purpose of
illustration, the diffusion speed of signatures in Vanilla
Gossip is shown in Figure 8 by computing the fraction ofFig. 9 Comparison of the convergence speed of VanillaXGossip and

. . . LS XGossip,n = 1000
the unique signatures in the network maintained by a peer
(in its tuple list) in each round. We observed that by round _
11, three randomly selected peers had learned about all tl@heorem 2), the convergence speed of XGossip depends on
signatures in the network. The trend would be similar fmjoy(A) (Theorems3). o o
XGossip when we observe a particular team, but the peers We_ also com.pared the acc.uracy.of cardinality estimation
in the team would learn about all their respective signature®f VanillaxGossip and XGossip at different rounds, namely,
in fewer rounds. Although a peer may learn about all the> 10, @nd 20, for all the 753 XPath queries. (Phg. value
unique signatures in the network, the frequency estimate¥@s in the range [0,1]). Figure 10(a) compares the accuracy

of these signatures may have high relative error and moref cardinality estimation for VanillaXGossip and XGossip
rounds may be needed for convergence. and shows the percentage of queries that had a relative error

below 20% (¢ < 0.2). As expected, both VanillaXGossip

and XGossip yielded better accuracy with increasing num-
ber of rounds — they were able to estimate more queries un-
der 20% relative error. (This was because the relative error

of the frequency estimate of each signature that was a super-

We compared the convergence speed of the frequency @bt of a query signature decreased as the number of rounds
signatures of VanillaXGossip and XGossip on datdSet  jncreased.)

Figure 9(a) shows the convergence speed of VanillaXGos- \yie gbserved that at round 5, the accuracy of XGossip

sip for three randomly selected peers b2, andps. Be-  aq higher than that of VanillaXGossip: XGossip estimated
yond round 10, the mean absolute relative error of the freégs o4 of the queries under 20% relative error, but VanillaX-
quency_esumate of a subset of signatures remained be'%’ossip could estimate only 70.2% of the queries with the
10%. Figure 9(b) shows the convergence speed of XG0 me level of accuracy. We made an interesting observation
sip for three randomly selected peers which belonged 1@, ting from round 10. VanillaXGossip had better accuracy
three different teams_. We observed that beyond rou.nd 5, ﬂ}ﬂan XGossip and by round 20, both reached their highest
mean absolute relative error of the frequency estimate ofq\,racy: 99.5%% for VanillaXGossip and 92.2% for XGos-
signatures for three randomly selected peers remained b§|‘p.7 The reason why XGossip had lower accuracy than Vanil-

low 1_0%' Thus, XGossip converged faster. than YanillaX'IaXGossip is straightforward: VanillaXGossip can find the
Gossip because onlgt peers gossiped a particular signature

instead of all the peers in the network. Recall that while the 7 \e ran vanillaxGossip and XGossip for more than 20 rounds, bu
convergence speed of VanillaXGossip dependdarin)  the accuracy did not improve further.

8.6 Comparison of VanillaXGossip and XGossip on
DatasetD;
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Round number Fig. 11 Bandwidth consumption of VanillaXGossip and XGossip,
(a) Accuracy at different roundss K 0.2 n=1000, A =8 k=28, 1=10
VanillaXGossip that we expect any peer to be capable of estimating the car-

XGossip ==
100 |
92

80

dinality of an XPath expression.

We compared the bandwidth consumption of Broadcast,
VanillaXGossip, and XGossip for datadet. Figure 12 shows
the total amount of data transmitted by peers using the three
approaches for, 000 and2, 000 peers. (We used compres-
sion in Broadcast, to get the best result.) For VanillaX@bss

60

% of queries

40 -

20

—_—m ‘ and XGossip, we report the total bandwidth consumed in

R0 B oy 20 rounds. Broadcast consumed significantly higher band-

(b) Accuracy by round 20 width than our gossip algorithms. XGossip consumed the

Fig. 10 Accuracy of cardinality estimation by VanillaXGossip and least bandwidth and. was betterthgn Vam”aXGOSSIp'. Broad-
XGossip,n = 1000, A = 8, k = 8,1 = 10 cast consumed 50 times and 131 times more bandwidth than

XGossip on 1000 and 2000 peers, respectively. We conclude

complete result set for a query locally during cardinalgy e that Broadcast will yield poor scalability with increasing
timation, but XGossip may miss signatures in the result séfumber of peers. Note that in Broadcast, we reqgite?)
due to the application of LSH. Figure 10(b) shows the dis/nessages to be exchanged, which is asymptotically higher
tribution of the estimation accuracy for queries by round 20than our gossip algorithms. (See Table 2.)

Finally, we discuss the bandwidth consumption of Vanil-
laXGossip and XGossip. Figure 11 shows the amount of

80

data transmitted during each of the 20 rounds. (Compression ol Vanilosaoms gg‘gmg;gggggg |
was enabled for both approaches.) The bandwidth consumed - XGossip (k=8, A=8, compressed) mm-
by VanillaXGossip grew quickly with increasing number of e oo ]
rounds and reached 731 MB by round 20 when most of the é 50 r 1
signatures were learned. By design, peers in XGossip gossip g 40t 1
only a finite fraction of the signatures in the network. There % 30 |
fore, XGossip transmitted a meager 25 MB per round — al- = a0l |
most 30 times less than VanillaXGossip. The total amount =

of data transmitted by VanillaXGossip and XGossip in 20 or , 047 . |
rounds was 10,309 MB and 484 MB, respectively. 0 1000

# of peers

) ] ] ] Fig. 12 Bandwidth usage: Broadcast vs VanillaXGossip vs XGossip
8.7 Comparison of Broadcast with Gossip Algorithms

We compared our gossip algorithms with an approach called

Broadcast. In Broadcast, each peer computes its tuple lig.8 Evaluation of XGossip on DatasBt

based on the documents that it wishes to publish. It then

sends its tuple list to all other peers in the network. Whenwhile XGossip had to compromise on the accuracy of car-
a peer receives tuple lists from other peers, it merges thesknality estimation for datasd?,, we show that it can scale
lists with its own list and updates the frequencies of sig-better than VanillaXGossip for larger datasets by consgmin
natures. In the end, each peer learns about all the distint#ss amount of bandwidth. VanillaXGossip has an inherent
signatures in the network along with their frequencieseNot limitation: it suffers from large message sizes during goss
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DatasetD, had more unique signatures than datdsgt LSH parameter| Team size Average time
Towards the later rounds in VanillaXGossip, peers had krn K (4) o contactk peers (ms)
about most of the signatures in the network. However, the j 186 ;g'gi
tuple Iigt _at a peer became so large that the peer_could not 8 8 5333
transmit its gossip message through the underlying DHT. 8 16 56.36

This caused VaniIIaXGosgip tofail during the exeCUtion@aTable 8 Time taken to contadt peers during cardinality estimation
onDs. In contrast, XGossip completed successfully by virtue

of its scalable design. o )
similarity at least 0.5 increased. Therefore, the accuddcy

cardinality estimation was much higher whiea= 8: 92.3%
"peer pl (team 1) —o— of the queries were estimated under 20% relative error as
Peer P2 e S o ] compared with 70.8% fok = 4. Because XGossip ran for
20 rounds, we did not observe any change in the accuracy of
cardinality estimation whem\ was increased from 8 to 16;
however, the total time to contaktpeers during cardinality
estimation increased. (See Table 8.)

)
80
70 |
60 %
50 1\
40 | Y
30
20 |

Mean abs. relative error (%)

ol below 10% | As reported in Table 2, the bandwidth consumption of
oL — XGossip depends ohandA. The results are shown in Fig-
12 4 6 8 10 ure 15. Whent was increased from to 8 (and A was set

Round number to 8), the amount of data transmitted per round (in the later

Fig. 13 Convergence speed of XGossip= 1000, A = 16, k = 4, rounds) doubled from 30.9 MB to 61.8 MB. This was be-
l=10 cause each signature was gossiped bgams. Again, when
A was increased fro®to 16 (andk was set to 8), the band-

Hereinafter, we focus on the evaluation of XGossip on i, consumption doubled in the later rounds and reached
D,. We measured the convergence speed of the frequency 9f o ximum of 123.9 MB per round. One may argue that if

signatures in XGossip, and the trend, as shownin Figure 13y _ ;| he handwidth consumption will be the least. (This
was similar to what we observed fbr, . Starting fromround i 5jies no gossip.) However, this is not suitable because if
5, the mean absolute relative error of the frequency estimat, o fails, then all the signatures that it is responsitrle f
of signatures for 3 randomly selected peers (from dn‘feren&ﬁter applying LSH) will be lost. Moreover, if a particular

teams) remained below 10%. signature is frequently accessed during cardinality estim
tion, then a single peer will be overloaded. Whan> 1,
‘ failures can be tolerated, and the load during cardinatity e
k=4, A=16 &= timation can be distributed across members of a team.
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: 120 r **xx****xxx**f
. * k=8, A=16 -~
S 40t 100 + * k=4 A=16 -~ N
¥ k=8, A=8 ——
20 + 80 k=d A=8 g |

60

[0-20) [20-0) -60) -0) [0)

40
Error range (%) /

20 &%

Amt. of data transmitted (MB)

Fig. 14 Accuracy of cardinality estimation achieved by XGossigaft
20 rounds for different values éfand A, n = 1000 0
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Round number

8.8.1 Impact of: and A on the Performance of XGossip Fig. 15 Bandwidth consumption of XGossip for different valueskof
andA, n = 1000

We also evaluated the effect of the LSH paramétemd

team sizeA on the accuracy of cardinality estimation of Next, we calculated the accuracy of cardinality estima-

VanillaXGossip. XGossip ran for 20 rounds and we per-tion achieved by XGossip for query sef¥ through@s

formed cardinality estimation on all the 753 XPath querieslisted in Table 5. Note that each query set had a different

The results are shown in Figure 14. Witk- 10, whenkwas  range ofp,.;,. In Theorem 3, we showed that the accu-

higher,a. increased quickly and therefore, the probability ofracy of cardinality estimation depends @R;, (O p,.in if

finding at least one team that gossiped two signatures with proxy signature is used). The higher the value,of, (or
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Fig. 16 Accuracy of cardinality estimation achieved by XGossip for Fig. 17 Accuracy of cardinality estimation achieved by XGossip for
A=38 A =16

We measured how the accuracy of cardinality estimation

Prmin), the higher is the probability of havmg a more acc.u_improved with increasing number of rounds for 1000 peers,
rate estimate. Thus we expect XGossip to achieve the high;

. A = 8,andk = 8 (Fi 18). At d 5, XGossi -
est level of accuracy fofs; and the lowest fof);. Thisis 8 an 8 'gure ) roun 203sIp e.s .
) . . . mated 83.5% of the queries under 20% relative error; this
precisely what we observed in our evaluation. Figures 16(a

0, 0,
shows the results fdr — 4 andA — 8. For under 10% rela- ihcreased to 88.8% at round 10 and 92.3% at round 20.

tive error, XGossip correctly estimated 84.6% of the queerie

in @5, but could do the same for only 37.6% of the queries ——y—
in Q1. Figure 16(b) shows the results for= 8 and A = 100 round 2o =2 |
8. The accuracy of cardinality estimation improved signif- Zz [
icantly. The reason was by increasihgland! = 10), «

increased quickly and therefore, the probability of findéng
least one team that gossiped two signatures with similarity
at least 0.5 increased. This, in turn, increased the prébabi
ity of finding all the signatures in the result set of a query,

thereby yielding higher accuracy. For all the query sets ex- 0 1020 [2040) [40.60) [60-50) [B0-100)
cept@,, less than 4% of the queries were estimated with Error range (%)

relative error higher than 10%. Fig. 18 Improvement in the accuracy of cardinality estimation with

When the team size was set to 16, the trends were sin{2¢'6asing # of rounds; = 1000, A =8,k = 8,1 =10
ilar, because we performed the cardinality estimation task
after 20 rounds_, and by then the frequency estimate of €% g 2 Evaluation of Compression in XGossip
ery document signature had converged for hath- 8 and
A = 16. The results are shown in Figures 17(a) and 17(b). |, section 4.5, we proposed a compression scheme for XGos-
While a higher value of improved the accuracy of car- sip to reduce the size of messages exchanged during gossip
dinality estimation of XGossip, it also increased the bandrounds. We evaluated the bandwidth savings achieved by our
width consumption. (See Figure 15.) As XGossip achievedcheme on datasé, with 1000 peers in the network, and
good accuracy and bandwidth efficiency foe= 8andA = k£ = 8 andA = 8. Figure 19 compares the bandwidth con-
8, we used these values for the rest of the experiments.  sumed by XGossip in each round with and without compres-

60

% of queries

40 |

20
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-~ 200 - #of | Avg. # | Avg. #of | Avg. # of Avg. Total # of
g 350 | peers of signa- signa- message| messages
%’ teams/| tures/ tures/ | size/peer

E 300 ¢ peer peer team (bytes)

g 207 500 | 88.40 | 4024.25| 4552 | 1,160.18] 880,480
£ 200 ¥ xGossip (no compression) —— | 1000 | 44.83 | 2040.81 | 4552 | 1,265.64| 880,480
g 150 XGossip - 2000 | 23.09 | 1051.2 | 4552 | 1,244.91| 883,500
S 100t ] )

5 5O L wxrxe Table 9 Teams, signatures, and messages

2 .

<

0 L L L L L L L L L
12 4 6 8 10 12 14 16 18 20 :
Round number In order to explain the observed trends, we measured the
average number of teams a peer belonged to, average num-
sion,n = 1000, A =8,k = 8,1 =10 . .
number of signatures per team. The results are shown in Ta-
le 9. We observed that when the number of peers was dou-

sion. Interestingly, with compression, XGossip consume(gled in the network, a peer became a member of almost half

about 5 times less bandwidth than Without compressio.n, iIf'he number of teams and gossiped almost half the number of
the later rounds: 62 MB with compression vs 340 MB W'th'signatures. The total number of teams was the same for each

out compression. We also computed the total amount Ofdat(,aase because the value lofwas fixed at 8 and peers gos-
transmitted in 20 rounds. While with compression, XGossip

. ) L .~ siped the same datasBt. Therefore, the average number
gagr;sdfml\:;ed 1,806 MB, without compression it transmlttedOf signatures assigned to a team was identical,
' ' We also measured the average size of a gossip message
transmitted by a peer and total number of messages exchanged
8.8.3 Scalability of XGossip in 20 rounds (Table 9). For 500 peers, the average message
size was slightly smaller — this was due to the lower band-
width consumption in the initial rounds of gossiping (Fig-
ure 20). The total number of messages was almost identical,
560 péers, ka8, =8 " because, in a round, each peer sent one message for each
o | B P e A | team it belonged to. The total amount of data transmitted is
the product of the average message size and total number of
messages. This explains why the bandwidth consumption of
XGossip was very similar for 500, 1000, and 2000 peers.
Next, we present the results for the accuracy of cardi-
nality estimation. Figure 21 shows the percentage of gserie
o m 5 5 estimated by XGossip under 20% relative error at different
Round number rounds forn = 500, n = 1000, andn = 2000. We tested
. . i _ . all the 753 XPath queries. In each case, the accuracy of es-
Fig. 20 Bandwidth consumption of XGossip by varying the # of peers, ,. .. .
A=8 k=8 1=10 timation improved as the number of rounds increased and
reached a maximum of 92% by round 20. Essentially, the
We studied the scalability of XGossip by varying the quality of estimates produced by XGossip was tolerant to the
number of peers in the network) from 500 to 8000. In increase in the number of peers in the network. This is be-
each setting, the same datagetwas used with: — 8 and cause, in XGossip, the convergence speed of the frequency

A = 8; thus, the total number of teams was identical in eaclfStimate of document signatures o_lepends&onstead ofn.
case. Compression was also enabled (See Theorem 3.) However, the time taken to send a mes-

sage during a gossip round will increasendacreases — the
DHT requiresO(log(n)) hops to route a message to a peer.
Results for 500, 1000, and 2000 peewe begin by report- A curious reader may ask why the accuracy of cardi-
ing the results fom = 500, n = 1000, andn = 2000. nality estimation after 5 rounds was noticeably better for
Figure 20 shows the amount of data transmitted by XGosr = 2000 than forn = 500 or n = 1000, althoughA
sip in each round. Eventually, the bandwidth consumptiorwas the same. (Also for = 2000, the accuracy after 10
of XGossip per round reached 62 MB in each case. (Forounds was slightly better than the others.) This happened
500 peers, the bandwidth consumed in the first 9 rounds wdsecause of the way we set up the peers to publish the doc-
lower than that for 1000 and 2000 peers.) Overall, the bandiments inD-. (See Section 8.3.) The total frequency of a
width consumption trends were very similar despite differ-signature inD, was partitioned differently in each setting:
ent number of peers in the network. Whenn was higher, more peers published a particular sig-

100

20

Amt. of data transmitted (MB)
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Fig. 22 Accuracy of cardinality estimation by XGossip fGs by
varying the # of peers4 = 8, k = 8)

Whenn = 2000, peers were closer to convergence after 5
rounds than whem = 500 or n = 1000. This resulted in
noticeably better accuracy of cardinality estimation rfte
rounds forn = 2000.

Next, we report the accuracy of cardinality estimation
for different query sets at different rounds. In Figure 22(a
we first show the trend for query s€t;. Despite different
number of peers in the network, the percentage of queries
in Q3 estimated with relative error under 10% was more
than 91% after round 5 and reached 100% after round 20.
Figure 22(b) shows the average of the mean absolute rela-
tive error for queries Q3 after 5, 10, and 20 rounds. No-
tice that the trends in Figure 22 are consistent with those
in Figure 21. We also averaged the accuracy of cardinality
estimation over three runs and the results are shown in Fig-
ures 22(c) and 22(d).

Figure 23 shows the accuracy of cardinality estimation
of XGossip on query set§; throughQs for n = 500,

n = 1000, andn = 2000, respectively. Figures 23(a), 23(b),
and 23(c) show the accuracy after 5 rounds. Figures 23(d),
23(e), and 23(f) show the accuracy after 20 rounds. (The
accuracy after 10 rounds is shown in Appendix B.) As be-
fore, XGossip estimated a higher percentage of queries with
a relative error of under 10% as the number of rounds in-
creased. It estimated query sets with higher valug,gf,

with higher accuracy. For all the three cases, 500, 1000,
and 2000 peers, after 20 rounds, XGossip estimated 100% of
the queries i3, Q4, andQ@s, and about 96% of the queries

in @2, and about 60% of the queries @, with a relative
error of under 10%.

One may wonder if the accuracy of cardinality estima-
tion obtained by XGossip is statistically significant and is
not obtained by chance. To verify this, we ran XGossip four
times with 2000 peers on datadet. Each time, the DHT

nature and therefore, held smaller fractions of the to&l fr overlay network was set up on a different set of EC2 in-
quency before the beginning of the initialization phase oktances. (This changed the Chord ids that peers mapped to.)
XGossip. This led to a more even partitioning of the signa-Table 10 shows the accuracy of cardinality estimation of
ture’s frequency among team members during the initializaxGossip after 20 rounds, measured as the percentage oégueri
tion phase (Algorithm 3) and therefore, more team membersstimated with relative error under 10%, on each query set
were likely to have that signature in their lists before tee b for four different runs. The meam) and standard deviation
ginning of the execution phase of XGossip.
Recall that in XGossip, each peer can be a member af),, there was a slight variation in percentages across differ-

multiple teams and therefore, will maintain a separatddist

(o) of the accuracy are also shown in the table. Qgrand

ent runs, but for the other query sets there was no variation.

each team that it belongs to. For the results in Figure 21, w&his indicates that convergence of XGossip is statistjcall

calculated the percentage of lists across all peers thatadid  significant and does not happen by chance. Note that in ear-
contain any signature at the end of the initialization phasdier rounds, we can expect more variation across runs when
The values were 19.85%, 15.84%, and 9.91%fet 500,

n = 1000, andn = 2000, respectively. This validates our ar-
gument that when was higher, the total frequency of a sig-

the convergence has not occurred yet.

nature was more evenly partitioned across team membersResults for 4000 and 8000 peefisow we report the results

The variation in the initial distribution of signatures af- of XGossip forn = 4000 andn = 8000. Table 11 shows
fected how quickly the signatures and their frequencies difhow the signatures and teams were distributed across peers,
fused through team members during the execution phasthe number of messages, and the average message size ex-
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Query % of queries withre < 0.1 #of | Avg.# | Avg. #0of | Avg. #0of | Avg. Total # of
set |[Runl][ Run2][ Run3[Rund| u | o peers | of signa- signa- | message| messages
Q. | 59.97 ] 55.98 ] 59.97 | 59.82 | 58.93 1.97 teams/| tures/ tures/ | size/peer
Q> | 96.91| 95.79 | 96.91 | 96.63 | 96.56 | 0.53 peer peer team (bytes)

Qs 100 | 100 | 100 | 100 | 100 | 0.00 4,000 | 13.14 | 598.24 4552 | 1,283.09] 885,220
Q1 100 | 100 | 100 | 100 | 100 | 0.00 8,000 | 650 | 295.78 4552 | 1,424.40| 880,800
Qs 100 100 100 100 100 | 0.00 Table 11 Teams, signatures, and messages

Table 10 Statistical significance of the accuracy of cardinalityrest
tion by XGossip & = 2000, A = 8, k = 8)
8.9 Churn and Failures

In this section, we report how XGossip performed in the

presence of churn and failures, including peer crashes.
changed during gossip. As expected, by doubling the num-

ber of peers, the load on each peer was almost halved.  8.9.1 Varying the Degree of Churn

Figures 24(a) and 24(b) show the accuracy of cardinalé recent study by Stutzbaat al. [79] showed that the ma-
ity estimation of XGossip on query sefs throughQs with  jority of peers in a P2P network are long-lived peers and the
4000 and 8000 peers, respectively, after 20 rounds. As b&emaining peers are short-lived and join and leave the net-
fore, XGossip estimated query sets with higher valyg,of, ~ Work at a high rate. It also showed that the session lengths
with higher accuracy. For both 4000 and 8000 peers, XGog2f peers fitted well into log-normal and Weibull distribu-
sip estimated 100% of the queries@, Q4, andQs, and  tions. We designed an experiment based on these observa-
about 97% of the queries @, and about 59% of the queries tions to study the behavior of XGossip under varying de-
in Q1, with a relative error of under 10%. grees of churn.

We set up the network with 8,000 (long-lived) peers.

Figure 24(c) shows the amount of data transmitted bPuring the execution of XGossip, we varied the number
XGossip in each round. For 8000 peers, the bandwidth corff short-lived peers that would join and leave the network.
sumed was slightly higher; we attribute this to the fact that/Vé set the number of short-lived peers to 0%, 5%, 10%,
fewer signatures are compressed in each round, thereby @2d 15% of the network size4., the number of long-lived
ducing the compression ratio. The average message size 8¢€rs)- The session lengths of short-lived peers followed a
8000 peers was higher than that for 4000 peers and this sufpg-normal distribution with, = 0 ando = 0.25 and the
ports our reasoning. (See Table 11.)
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Undelivered +
donot-care
messages (%)

Degree of churn
# of short-lived
peers (%)

Wrong-team

o each peer (in the selected subset) crashed in a round between
messages (7o

11 and 20, picked randomly. In Table 13, we report the ac-
curacy of cardinality estimation by XGossip after 20 rounds

0(0%) | 1,641 (0.18%) | 4,182 (0.47%) : :
200 (5%) | 4,393 (0.49%) | 3,500 (0.39%) for settingsS; and.S,. This table shows the percentage of
800 (10%) | 8,061 (0.91%) | 3,542 (0.40%) queries in the entire query set (containing 753 querieg) tha
1200 (15%) | 12,818 (1.45%)| 4,654 (0.53%) were estimated with relative error below 20%. It also shows

Table 12 Number of undelivered, donot-care, and wrong-team mesthe accuracy achieved by XGossip when none of the peers
sages in XGossip under varying degrees of churr<(8000, k = 8,  crashed (92.56%). As expected, the accuracy dropped when
A = 8, after 20 rounds) more peers crashed because of higher disturbance to mass
conservation. The accuracy was slightly higher when peers
round when a short-lived peer joined the network was pickedrashed in later rounds as this caused lower disturbance to
randomly between 1 and 20. mass conservation.
We calculated (a) the number of undelivered and donot-

care messages, (b) the number of wrong-team messages, and # of peers % of queries

(c) the accuracy of cardinality estimation. Table 12 shows that crashed _(re<0.2)

the sum of the number of undelivered and donot-care mes- (%0) settingS: | settingS»

sages under varying degrees of churn. As expected, when 0 (0%) 92.56%

more short-lived peers joined the network, more donot-care 400 (5%) 89.38% | 90.44%
) ' _ 800 (10%) | 81.41% | 82.20%

messages were observed. Note that in the implementation of 1600 (20%)| 80.35% | 8L.27%

XGossip, we avoided the disturbance to mass conservation
due to undelivered and donot-care messages, but did not dable 13 Accuracy of cardinality estimation achieved by XGossip in
so for wrong-team messages. Still, XGossip achieved highe presence of peer crashes £ 8000, k = 8, A = 8, after 20
accuracy of cardinality estimation after 20 rounds. The re/°!"9s)

sults are shown in Figure 25. Table 12 also shows the nun$.10 Summary of Main Results

ber of wrong-team messages. Although wrong-team mes-

sages were not consumed, they caused negligible distiebanie summarize the main results obtained from our perfor-

to mass conservation as their count was under 0.55% of tH8ance evaluation.

total number of gossip messages. — XGossip was superior to VanillaXGossip: it converged
faster, consumed significantly less bandwidth, and scaled
on larger datasets than VanillaXGossip. This is because
of the divide-and-conquer strategy in XGossip.

We studied the behavior of XGossip by allowing peers to — XGossip obtained high accuracy of cardinality estima-
crash during gossip. Note that XGossip cannot preserve mass tion on large number of peers. LSH enabled XGossip to
conservation when peers crash, because the tuple lists of do effective load balancing among peers, and the exper-
these peers will be permanently lost. We set up the network imental results were consistent with the theoretical anal-
with 8000 peers and picked a subset from these peers at ran- ysis. As expected, query sets with higher value.gf,,
dom, containing 5%, 10%, and 20% of the network size, were estimated with higher accuracy.

respectively. In one scenario, which we céll, each peer - Compression yielded significant reduction in the band-
(in the selected subset) crashed in a round between 1 and width consumption of XGossip, as it was able to com-
10, picked randomly. In another scenario, which we 6all press similar signatures effectively.

8.9.2 Varying the Number of Peer Crashes
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— Finally, XGossip tolerated reasonable degrees of churbalancing and reducing bandwidth consumption, XGossip
during execution and still achieved high accuracy of caremploys: (i) a divide-and-conquer strategy by applying lo-
dinality estimation. However, when peers crashed duringality sensitive hashing and (ii) a compression scheme for
gossip, there was higher disturbance to mass conserveempacting document summaries. XGossip was evaluated
tion and this lowered the accuracy of cardinality estima-on Amazon EC2 using a large heterogeneous collection of

tion achieved by XGossip. XML documents. XGossip produced high quality cardinal-
ity estimates and was efficient in bandwidth usage. The em-
9 Handling Value Predicates in XPath Queries pirical results were consistent with the theoretical asialy

XGossip (and VanillaXGossip) can be extended to handl@f XGossip. We also reported the behavior of XGossip in
XPath queries with value predicates. Consider the documetite presence of churn and failures, including peer crashes.
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Appendix A

Theorem 2

Givenn peersps, ..., pn, let a signatures be published by some
peers with frequencieg, . . ., fm, Wherem < n. With at least prob-
ability 1 — 4, there is a roundt, = O(log(n) + log(L) + log(3)),
such that in all rounds > t¢,, at peerp;, the relative error of the
estimate of the average frequencysopi.e., % o 1 fi,is at most.

Proof.

In this proof, we show that VanillaXGossip does not violateass
conservation” and therefore the proof for Push-Sum holds/émil-
laXGossip. Without loss of generality, suppose only oneaigre s
exists in the network and a pegiis observed. Thep has either pub-
lisheds or has not.

Case 1:Suppose has not published. Suppose knows this fact,
and starts with a sum and weight (0,1). Suppose in raypdeceives
(fs,w) wherefs > 0 such that in all the previous roungshas only
received messages from those peers that have not publisBegpose
(0, w") be the sum and weight in rourté- 1 atp. Thenp will compute
its new sum to bef, + 0 and weightw + w’ and sendsﬂzj and

of the special multiset_;,_,. Now the situation is identical to Vanil-
laXGossip except that the number of peers involved in comguhe
average isA. Hence the above theorem holds. O

Theorem 4

Given an XPath query, VanillaXGossip can estimate the cardinality
of ¢ with a relative error of at moste and a probability of at least
(1 —=190)inO(log(n) + log(%) + log(%)) rounds.

Proof.

From Theorem 2, we know that the frequency of a signature in
R can be estimated with a relative error of at mestnd confidence
(1—6)inO(log(n) + log(+) + log(%)), wheren denotes the num-
ber of peers in the network. In VanillaXGossip, the frequesof »
signatures inR is used to compute the cardinality estimategpfind
therefore, the total relative error is at most

O

Theorem 5

% to another peer. Now VanillaXGossip resembles Push-Sum and

mass conservation is preserved and the proof of Push-Suis.hol
But if p does not know the fact thatexists, and uses the place-

Given an XPath query, SUPpPOSey.;» denotes the minimum similar-
ity betweeny's signature and a signature iR. XGossip can estimate

holder L and starts with (0,1) as the sum and weight for this placethe cardinality ofy with a relative error of at moste and a probability

holder signature. Suppose we replay the actions up to rauddw in
roundt, p receives(fs, w) where fs > 0. Now the sum and weight
based onL will be (0, w") in roundt — 1 atp. Peerp will compute its

new sum to bef, + 0 and weightw + w’ and sendst2 and £

to another peer. So even whgrloes not know about the existence of
s, it can arrive at the right sum and weight in rouni guarantee mass
conservation.

Case 2:Supposep has publisheds. Without loss of generality,
suppose in round, p receives the placeholder signature withw")
from some peeq. This means that so fgrhas received messages from
peers that do not know abosito begin with. Therp computes the sum
and weight ag’, + 0 andw + w’. This would be the same if the peers
that have sent a messageyt@ncludingq) until roundt—1, started with
(0,1) for signatures if they assumed thatexisted in the network. Then
mass conservation is guaranteed and the proof of Push-Sigs ho

From cases 1 and 2, we can conclude that forgnypass conser-
vation holds in VanillaXGossip and therefore, the proof a6RP-Sum
holds.

O

Theorem 3

Givenn peersp1, . . ., pn in @ network, let a signature be published
by somem peers with frequencieg,, ..., fm, wherem < n. Sup-
posep; belongs to a team that gossipsfter applying LSH ors. Let
A denote the team size. With at least probability ¢, there is a round
to = O(log(A) + log(+) + log(5)), such that in all rounds > ¢,,

of at leastr - (1 — ) in O(log(A) + log(+) + log(3-)) rounds,
wherea = 1 — (1 — ¢,.,.)*, andk and{ denote the parameters of
LSH.

Proof.

From Theorem 2, we know that the frequency of a signature in
R can be estimated with a relative error of at mesind confidence
(1 —=6) in O(log(A) + log(+) + log(3-)), where A denotes the
team size. In XGossip, the frequenciesraignatures inR is used to
compute the cardinality estimate @f and therefore, the total relative
error is at moste.

The confidence of the estimate also depends on the propefties
LSH. Because:» denotes the minimum similarity betweegis sig-
nature and a signature i, the probability of finding all signatures in
R by contactings teams at query time is at least= 1—(1—¢,,;,,)*,
wherek andl are the parameters of LSH. (Suppose a proxy signature is
used such that the minimum similarity between it and a sigean R
iISPmin. Thena =1— (1 — )k.) Therefore, the net confidence
isatleasiy - (1 — ).

l
Pmin

|

Corollary 1

XGossip can estimate the cardinality @fwith a relative error of at
mostre and a probability of at leastl — 6) in O (log(A) +log(L) +
log(ﬁ)) rounds.

Proof.

To achieve the same confidence as VanillaXGossp,(1 — §),

at peerp;, the relative error of the estimate of the average frequencythe following equations must hold:

ofs,i.e, % >, fi,is at most.

Proof. Supposérs = (hs1, ..., hsi) denotes the output of LSH
on s. Without loss of generality, consider the teary . During initial-
ization, any peer that published an XML document whose sigaas
s, will send (s, (f,w)) to a member of,;. At the end of the initial-
ization phase, mass conservation holdsdaw.r.t. teamhs;. This is
because the average of the frequency aicross all the members of
teamh; is the true average, and the sum of weightssfiw A. During
the execution phase, is gossiped by the members of tedip; and
mass conservation is preserved like in VanillaXGossip duiné¢ use

1-8)=a-(1-105)
.~.5’:%§_1 1)

Therefore, XGossip achieves a relative error of at meswith a
probability of atleas{1 —d) in O(log(A)+ log(%) +log($))
rounds.

O
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Fig. 26 Accuracy of cardinality estimation achieved by XGossigaftO rounds

Appendix B

Accuracy of Cardinality Estimation

Figure 26 shows the accuracy obtained by XGossip after Iiftdstor
500, 1000, and 2000 peers.
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