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Abstract. One of the most attractive biometric techniques is gait recog-
nition, since its potential for human identification at a distance. But gait
recognition is still challenging in real applications due to the effect of
many variations on the appearance and shape. Usually, appearance-based
methods need to compute gait energy image (GEI) which is extracted
from the human silhouettes. GEI is an image that is obtained by aver-
aging the silhouettes and as result the temporal information is removed.
The body joints are invariant to changing clothing and carrying condi-
tions. We propose a novel pose-based gait recognition approach that is
more robust to the clothing and carrying variations. At the same time,
a pose-based temporal-spatial network (PTSN) is proposed to extract
the temporal-spatial features, which effectively improve the performance
of gait recognition. Experiments evaluated on the challenging CASIA B
dataset, show that our method achieves state-of-the-art performance in
both carrying and clothing conditions.
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1 Introduction

Gait is a kind of behavioral biometric feature, that is suitable for human identi-
fication at a distance. In consequence, gait recognition technology has attracted
increasing attention in video surveillance.

There have been mainly two categories of gait approaches with different
highlights. The first one is model-based methods [3] which employ modelling
of human body structure and local movement patterns of different body parts.
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The second category of gait approach is appearance-based methods [4, 5] which
directly extract gait representations from videos. Gait energy image (GEI) is
the feature most applied, because of its good compromise between recognition
rate and simplicity of computation. However, there are different cons concerning
the use of human silhouettes, first, in wild conditions the extraction is affected
by illumination changes and many silhouettes appear incomplete. Second, even
when the extraction step is performed correctly, the shape depends on the view
angles, clothes variations and the carring conditions.

Some authors faced this problem removing the parts of silhuoettes affected
by variations and retain only those uninfluenced parts to eliminate the effects
of clothing and carried objects. But, recognition rates are not good enough.
In order to handle with the clothing and carrying variations, Huang et al. [13]
increase robustness to some classes of structural variations by fusing Shifted
Energy Image and the Gait Structural Profile. In [12], Hossain et al. analyze the
discrimination capability of different parts through dividing the human body
into eights parts. Yu et al. [21] employ the Stacked Progressive Auto-Encoders
(SPAE) trying to transform the clothing and carrying conditions into normal
walking. In [1] the authors propose a novel covariate cognizant framework to
deal with the presence of such clothes and carring covariates. They describe gait
motion by forming a single 2D spatio-temporal template from video sequence.
Guan et al. [10] proposed a random subspace method (RSM) framework for
clothing-invariant gait recognition by combining multiple inductive biases for
classification. In Liang et al. [16] the golden ratio takes the characteristics of
clothing into consideration, enabling all the clothing parts to be discarded and
the unaffected parts of the gait to be retained. Das et al. [7] introduced the
use of rotation forest ensemble classifier in gait recognition, and experimentally
demonstrates its superiority to random subspace method in this field.

Some researchers have studied the problem as a pose-based gait recognition,
for example [15] uses skeleton data provided by the low-cost Kinect sensors. In
[9] instead of using binary silhouette to describe each frame, they use the human
body joint heatmap. They feed the joint heatmap of consecutive frames to Long
Short Term Memory (LSTM). The hidden activation values at the last timestep
is used as their gait feature.

Our approach is based on early studies on gait perception that showed that
joints’ motion over time is sufficient for humans to identify familiar persons. Until
now, only structural feature was not enough to human identification problem in
gait analysis, since pose estimation requires accurate tracking of body parts,
which is known to be a very challenging problem considering the nonrigidness
and self-occlusion of the human body. However, a recently bottom-up method
[6] for pose estimation using deep learning opens the door to retake approaches
based on dynamic parameters. We believe the body joint is invariant to changing
clothing and changing carrying conditions. Our contribution in this paper is a
pose based temporal-spatial network that combines a LSTM and Convolutional
Neural Network (CNN) to capture the dynamic and static information of a gait
sequence. Our method is robust to the clothing variations and carring conditions.
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2 Our method

In this paper, a novel pose-based gait recognition approach is proposed to deal
with clothing and carrying condition variations. The work-flow of proposed
method is illustrated in Fig. 1. The first step is to estimate the pose infor-
mation from the given consecutive frames. Then, the pose coordinate sequences
is extracted and preprocessed. Finally, a pose-based temporal-spatial network
(PTSN) is proposed to extract the temporal features and spatial features from
gait pose rather than image, which effectively improve the performance. In this
section, we will illustrate our method in detail.

Pose1

Pose2

Posen

… … …Pose 

Estimation

Coordinate

Extraction

Normalization 

LSTM

CNN

Te
m

p
o

ral-Sp
atial Fe

atu
re

s

Cross-entropy 
Loss

Contrastive 
Loss

Extract pose sequences and preprocess PTSN network

Fig. 1. Work-flow of our pose-based gait recognition approach.

2.1 Pose information

The proposed method employs the pose information to extract the invariant
feature for clothing and carrying conditions. For the appearance-based methods,
one common pipeline is to evaluate the similarities between pairs of gait energy
image (GEI). However, the GEI would be greatly changed by the clothing and
carrying condition variations which directly lead to decrease the recognition rate.
Besides, the GEI is computed by averaging the silhouettes, which will eliminate
the temporal information in the process of walking. In contrast, the human pose
is less affected by these variations due to it does not depend on human body
appearance and shape. In addition, gait is a process of movements, the pose
sequences has powerful representation capacity to capture the invariant features
from consecutive frames. Consequently, the invariant features that are robust to
clothing and carrying conditions, are extracted from the pose sequences rather
than human shape.

We use a pre-trained model of multi-person 2D pose estimation [6] to acquire
the human pose. Cao et at. propose the Part Affinity Fields which directly
estimate the association between anatomical parts. The pre-trained model can
estimate 18 joints, namely Nose, Neck, RShoulder, RElbow, RWrist, LShoulder,
LElbow, LWrist, RHip, RKnee, Rankle, LHip, LKnee, LAnkle, Reye, LEye, Rear
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and Lear, as shown in Fig. 2. Before we use the pose information, we should
normalize and select the effective joints in order to extract more robust feature.

Fig. 2. Normal walking, walking with a bag, and walking with a coat sequences from
CASIA B dataset: 18 human joints are shown.

Normalization: The distance between people and camera will change at all the
time when people walk through the fixed camera. In order to avoid the influence
of this distance change, each joint needs to be normalized. In the process of
people walking, the Neck and the center of Hip are two relatively more stable
joints than others. As a result, the normalization should be based on that two
joints. The equation of normalization is defined as follows:

P ′i =
Pi − Pneck

Hnh
(1)

where Pi ∈ R2 be the coordinate of body joint i, P ′i be the normalized coordinate
of Pi, Pneck is the Neck coordinate, the Hnh is the height between the Neck
position and the center of Hip position.

Selection of Effective Joints: One of the most important features is the
change of human leg movement. Cunado et al. [8] used the legs as a model, as
they found harmonics from the motion of legs. In addition, from the Fig. 2, we
can find the width of shoulder in the walking with a coat is little bigger than the
normal walking and the walking with a bag. Therefore, not all of the joints can
effectively boost the performance of gait recognition, and even some joints will
perform worse. As the Neck already was used as a base point for normalization,
we do not have to choose Neck as an effective joint. Consequently, we choose
the RHip, RKnee, Rankle, LHip, LKnee, LAnkle as the effective joints of gait
feature. These six effective joints not only have rich representation capacity for
gait recognition, but also more robust to the clothing and carrying condition
variations than other joints.

2.2 PTSN for Gait Temporal-Spatial Features

We borrow the idea of Deep Evolutional Spatial-Temporal Networks [23], and
propose a pose-based temporal-spatial network (PTSN) to capture the dynam-
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ic and static information of gait pose. The proposed PSTN mainly consists of
two kinds of networks, as shown in Fig. 1. Firstly, we use the Long Short-Term
Memory (LSTM) [11] to extract the temporal features from gait pose sequences.
Secondly, the Convolutional Neural Network (CNN) is used to extract the spatial
features from static gait pose frames. Finally, the two types of features are com-
bined to capture the dynamic-static information of gait pose, which has powerful
representation capacity to extract invariant features from different gaits.

LSTM for Temporal Features: As gait is a process with a series of move-
ments, it is natural to consider to extract the dynamic information from the
walking sequence. Simonyan et al. [19] trained an additional network on top of
optical flow in order to capture temporal information under the framework of
CNN. Although CNN can achieve state-of-the-art performance on image classi-
fication tasks, it has not yet been shown to be effective in capturing dynamic
information. In contrast, the Long Short-Term Memory is supposed to better
handle with temporal sequences. Therefore, we employ the LSTM to extract the
temporal features from consecutive pose frames.

CNN for Spatial Features: The LSTM can effectively extract the dynamic
information, but it has not enough capacity to extract the static information
of gait, such as the length between Ankle and Knee. In order to complement
the information of static appearance, Zhang et al. [23] proposed a multi-signal
convolutional neural network (MSCNN) to extract spatial features from static
frames. Unlike the MSCNN, we fuse CNN with LSTM in the top fully convolu-
tional layer, which effectively boost the performance of gait recognition.

2.3 Definition of Loss Function

In order to extract the temporal-spatial features with large between-gait vari-
ations and reduce the within-gait variations, we adopt a multi-loss strategy to
optimize the PTSN network. The Cross-entropy Loss classifies each gait sequence
into different gaits, and the Contrastive Loss constrains the relationship between
the temporal-spatial features.

Cross-entropy Loss: In the task of recognition, many researchers [23] use
the recognition signal as supervision. Because of features have to be classi-
fied into different classes, so the Cross-entropy Loss is useful to pull apart the
temporal-spatial features of different gaits. The Cross-entropy Loss can promote
the temporal-spatial features with large between-gait variations, it is defined as:

CELoss = −
∑
i

yi log(pi) (2)

where yi is the true distribution of sample i, and pi is the predicted probability
of gaits.
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Contrastive Loss: The Cross-entropy Loss can push temporal-spatial features
apart, but it has not a strong capacity to reduce the variations of identical human
gaits. Many researchers employ another loss function to constrain the feature,
such as Zhang et al. [23] use the VeLoss and Wen et al. [20] adopt the center
loss. In order to extract powerful features, we adopt an additional Contrastive
Loss, which is not only helpful to enlarge the between-gait variations, but also
can reduce the within-gait variations. The Contrastive Loss is defined as:

CTLoss =
1

2
y‖fi − fj‖22 +

1

2
(1− y)max(λ− ‖fi − fj‖22, 0) (3)

where fi and fj are features of two input sequences. y = 1 when the two input
sequences are from the same human gait, then the fi and fj will to be close.
y = 0 means that the two input sequences are from different human gaits. In
this case, the distance of fi and fj is limited to be larger than margin λ.

3 Experiments and Analysis

3.1 Experimental setting

To evaluate the performance of the proposed pose-based gait recognition ap-
proach, several experiments are performed on the challenging CASIA B gait
dataset [22]. CASIA B dataset is one of the largest public gait databases. It has
124 subjects in total (31 females and 93 males). There are 10 sequences for each
subject, 6 sequences of normal walking (NM), 2 sequences of walking with bag
(BG) and 2 sequences of walking with coat (CL). The three kinds of sequences
as shown in Fig. 2. In these 10 sequences, each sequence has 11 views which were
captured from 11 cameras, the view angle set of camera is {0◦,18◦,· · ·, 180◦}.
Like the experimental setting of SPAE [21] and GaitGAN [18], we also set the
first 62 subjects as the training set and the rest of subjects as the test set. In
the test set, the gallery set consists of the first 4 normal walking sequences of
each subjects and the probe set consists of the rest of sequences, as be shown in
Table 1.

Table 1. Experimental setting on CASIA B dataset.

Training
Test

Gallery Set Probe Set

ID: 001-062 ID: 063-124 ID: 063-124
Seqs: NM01-NM06 Seqs: NM01-NM04 Seqs: NM05-NM06
BG01-BG02, CL01-CL02 BG01-BG02, CL01-CL02
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3.2 Experimental results on CASIA B dataset

Our experimental results on test set of CASIA B dataset are shown in Table 2.
The gallery set of Table 2 is the first 4 normal walking sequences at a specific
view, the probe sets has three types which are the last 2 normal sequences, 2
carrying bags sequences and 2 with coats sequences, respectively. In the tables,
each column represents a view of gallery set and probe set.

Table 2. The recognition rate for 11 single views on CASIA B dataset.

View 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

Probe NM 5-6 96.77 99.19 98.39 98.39 94.35 96.77 95.97 95.97 96.77 98.39 95.16 96.92

Probe BG 1-2 89.52 95.16 92.74 87.90 83.87 79.03 84.68 83.06 83.06 90.32 74.19 85.78

Probe CL 1-2 53.23 83.87 87.90 72.58 61.29 61.29 75.00 66.94 70.97 70.16 45.97 68.11

3.3 Comparisons with GEI+PCA, SPAE and GaitGAN

We compare the average recognition rates without view variation with GEI+PCA
[17], SPAE [21] and GaitGAN [18], as is shown in Fig. 3. The average recog-
nition rates without view variation are computed by averaging the recognition
rates on the 11 single views. The corresponding values for GEI+PCA, SPAE
and GaitGAN are obtained in the same way. In normal walking condition, our
method achieves comparable performance with GEI+PCA, SPAE and GaitGAN.
In walking with carrying condition, the proposed method outperforms these three
methods greatly, its recognition rate is higher than the best result by 13%. For
walking with clothing condition, our method achieves a high average recognition
rate of 68.11%, which exceeds the best result by more than 22%. The compar-
ison shows that our method can effectively handle with carrying and clothing
condition variations.

3.4 Comparisons with state-of-the-art

For further illustrate the performance of our method, we also compare the pro-
posed method with state-of-art methods. Including Shanableh et al. [2], Huang
et al. [13] and Jeevan et al. [14] which are all appearance-based methods for the
90◦ view. Since our method does not adopt the fusion scheme, we only compare
the nine single-level methods (R1-R9) of Shanableh et al. In addition, we want
to emphasize that our method contains only one model to handle with any sin-
gle view. The 90◦ view is the best angle for appearance-based methods because
of captures more dynamic information, but not for our pose-based method due
to many joints are invisible in 90◦ view. So we use both 90◦ and 36◦ views to
compare with these methods, the result is listed in Fig. 4. The comparison shows
that proposed method achieves comparable performance with state-of-the-art in
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Fig. 3. The average recognition rates compared with GEI+PCA, SPAE and GaitGAN.

normal walking, better than many methods in carrying and clothing conditions.
Besides, the comparison of average recognition rate of NM, BG and CL shows
that our method achieves good performance, especially for the 36◦ view.
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4 Conclusions and Future Work

In this paper, we proposed a novel pose-based gait recognition approach to han-
dle with clothing and carrying condition variations. In order to extract the dy-
namic and static information for gait poses from a sequence of frames, a pose-
based temporal-spatial network (PTSN) is proposed which can greatly boost the
performance. Experimental results show that our method can improve recogni-
tion rate greatly especially for the clothing condition, and achieve state-of-the-art
performance.
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In the future, we will extend this method to handle with other challenging
variations, such as view condition. The view variation is an important challeng-
ing in gait recognition. The pose-based gait recognition approach has greatly
potential to deal with all variations in gait recognition.
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