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a b s t r a c t 

The performance of gait recognition can be adversely affected by many sources of variation such as view 

angle, clothing, presence of and type of bag, posture, and occlusion, among others. To extract invariant 

gait features, we proposed a method called GaitGANv2 which is based on generative adversarial networks 

(GAN). In the proposed method, a GAN model is taken as a regressor to generate a canonical side view of 

a walking gait in normal clothing without carrying any bag. A unique advantage of this approach is that, 

unlike other methods, GaitGANv2 does not need to determine the view angle before generating invari- 

ant gait images. Indeed, only one model is needed to account for all possible sources of variation such 

as with or without carrying accessories and varying degrees of view angle. The most important com- 

putational challenge, however, is to address how to retain useful identity information when generating 

the invariant gait images. To this end, our approach differs from the traditional GAN in that GaitGANv2 

contains two discriminators instead of one. They are respectively called fake/real discriminator and iden- 

tification discriminator. While the first discriminator ensures that the generated gait images are realistic, 

the second one maintains the human identity information. The proposed GaitGANv2 represents an im- 

provement over GaitGANv1 in that the former adopts a multi-loss strategy to optimize the network to 

increase the inter-class distance and to reduce the intra-class distance, at the same time. Experimental 

results show that GaitGANv2 can achieve state-of-the-art performance. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Gait is a behavioural biometric modality with a great poten-

ial for person identification because of its unique advantages such

s being contactless, hard to fake and passive in nature, i.e., it re-

uires no explicit cooperation from the subjects. Furthermore, the

ait features can be captured at a distance in uncontrolled sce-

arios. Therefore, gait recognition is a very valuable technique in

ideo surveillance, with a wide-ranging applications. This is par-

icular so since many surveillance cameras have already been in-

talled in major cities around world. Therefore, by continually im-

roving its accuracy, the gait recognition technology will certainly

dd to the repertoire of tools available for crime prevention and

orensic identification. For this reason, gait recognition is and will
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ecome an ever more important research topic in the computer

ision community. 

Unfortunately, automatic gait recognition remains a challeng-

ng task because it suffers from many potential sources of varia-

ion that can alter the human appearance drastically, such as, but

ot limited to aspects such as viewpoint, clothing, and objects be-

ng carried. These variations can affect the recognition accuracy

reatly. Among these sources of variation, view angle is one of the

ost common one because we can not control the walking direc-

ions of subjects in real applications, and that is the central focus

f our work here. 

As a proof of concept, we shall consider variability in conditions

f consisting of view angle, choice of clothing and type of objects

eing carried by the subject. The proposed generative adversar-

al networks (GAN) can handle all these variations simultaneously

y using only one model. GAN acts as a regressor which takes an

ait image captured with any combination of the above-mentioned

https://doi.org/10.1016/j.patcog.2018.10.019
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sources of variation and then transforms it into a canonical side

view image The method can do so without any knowledge regard-

ing the factors that contribute to the gait variability. The most im-

portant computational challenge, however, is to address how to re-

tain useful identity information when generating the canonical, in-

variant gait images. 

The rest of the paper is organized as follows. Section 2 presents

the state-of-the-art literature in gait recognition that deals with

invariance in gait recognition. Section 3 describes the proposed

method. Experiments and evaluation are presented in Section 4 .

The last section, Section 5 , gives the conclusions and identifies fu-

ture work. 

2. Related work 

To reduce the effect of different kinds of variations is what is

concerned about by most gait recognition methods. Early literature

such as [1] uses static body parameters measured from gait im-

ages as a kind of view-invariant feature. Kale et al. [2] used the

perspective projection model to generated side view features from

arbitrary views. Unfortunately, the relation between two views is

hard to be modelled by a simple linear function, which is achieved

via the perspective projection model. 

Some other researchers [3,4] tried to build a 3D model for dif-

ferent human bodies so that any arbitrary 2D view can be gen-

erated by projecting the 3D model at any desirable angle. Un-

fortunately, this method usually requires multiple calibrated cam-

eras installed in a fully-controlled environment and subjects to be

co-operative, that is, they are told to walk in a particular direc-

tion. In [5] , Tang et al. proposed a gait partial similarity matching

method that assumed a 3D project shares commons view surfaces

at different views. A 3D human body model can be built based on

the silhouettes, and then improve silhouettes can be obtained from

the 3D model. 

In order to attain more robustness with respect to view-angle

variation, the most commonly used model is arguably the view

transformation model (VTM) which transforms a gait feature from

one view to another view. Makihara et al. [6] designed a VTM

named as FD-VTM that works in the frequency-domain. Different

from FD-VTM, RSVD-VTM proposed in [7] operates in the spa-

tial domain. It uses reduced singular value decomposition (SVD)

to construct a VTM and then produces an optimal Gait Energy

Image (GEI) feature vector based on linear discriminant analy-

sis (LDA). RSVD-VTM achieves good results. Motivated by the ca-

pability of robust principal component analysis (RPCA) for fea-

ture extraction, Zheng et al. [8] achieved a robust VTM via RPCA

for view invariant feature extraction. By considering view trans-

formation as a regression problem, Kusakunniran et al. [9] used

elastic net as means of achieving a sparse VTM-based regression

model. VTM can also be achieved using canonical correlation anal-

ysis(CCA). Bashir et al. [10] formulated a gaussian process classi-

fication framework to estimate view angle in the probe set, then

used CCA to model the correlation of gait sequences from differ-

ent, arbitrary views. Luo et al. [11] proposed a gait recognition

method based on partitioning and CCA. They separated a GEI im-

age into 5 non-overlapping parts, and for each part they used CCA

to model the correlation. In [12] , Xing et al. also used CCA; but

they reformulated the traditional CCA so that it can deal with

a high-dimensional matrix, and reduced the computational bur-

den in view-invariant feature extraction. Last but not least, Lu

et al. [13] proposed a method that can handle arbitrary walking

directions by using cluster-based averaged gait images. However, if

there is no view with similar walking direction in the gallery set,

the recognition rate will decrease. 

For most VTM-related methods, a view transformation

model [6–9,14,15] can only transform one specific view angle
o another one. The model heavily depends on the accuracy of

iew angle estimation. Furthermore, in order to transform gait

mages from any arbitrary view angle to a specific view, a lot

f models are needed. To overcome this limitation, recently re-

earchers have tried to achieve view invariance using only one

odel. For instance, Hu et al. [16] proposed a method named

s ViDP which extracts view invariant features using a linear

ransform. Hu [17] also applied regularized local tensor discrim-

nant analysis (RLTDA) which can capture nonlinear manifolds

s a means to achieving dimensionality reduction. However, the

ethod is sensitive to initialization. A similar method based on

he tensor representation can also be find in [18] . Instead of

sing a linear transformation, Wu et al. [19] trained deep convo-

ution neural networks for any view pairs; thus achieved a high

ecognition accuracy. 

Besides variation in view, clothing can also change the human

ody appearance as well as shape greatly. Some clothes, such as

ong overcoats, can occlude the leg motion. Carrying condition is

nother factor which can affect feature extraction since it is not

asy to separate the carried object from a human body just from

he image information. In the literature, there are a few methods

hat can achieve clothing invariance in gait recognition, unlike its

iew invariant counterpart. In [20] , clothing invariance is achieved

y dividing the human body into 8 parts, each of which is subject

o discrimination analysis. In [21] , Guan et al. proposed a random

ubspace method (RSM) for clothing-invariant gait recognition by

ombining multiple inductive biases for classification. One recent

ethod named as SPAE in [22] can extract invariant gait features

sing only a single model that can handle angle, clothing and carry

onditions. Wu et al. [19] adopted convolutional neural networks

CNNs) to optimize the feature extraction and achieved state-of-

he-art performance. 

Recently, thanks to the advancements in human pose estima-

ion, it is now possible to use joints information from a raw im-

ge for gait recognition. In addition, some methods focus on pose-

ased gait recognition [23–26] . The rationale for this is that hu-

an joints are invariant to objects being carried and the choice of

lothing. Some researchers have studied the problem as a pose-

ased gait recognition, like Liang et al. [23] who used skeleton

ata provided by low-cost Kinect sensors. In [24] , instead of us-

ng binary silhouette to describe each frame, Feng et al. used a

uman-body joint heatmap. They fed the joint heatmap of con-

ecutive frames to a Long Short Term Memory (LSTM), which is a

ind of recurrent neural network, to extract the gait features. Liao

t al. [25] proposed a pose-based gait recognition method and used

he posed-based temporal-spatial network (PTSN) to extract the in-

ariant features. The more recent work in [26] employ the esti-

ated 3D pose for gait recognition to improve the robustness to

iew variation. However, those pose-based methods are still chal-

enging due to the fact that a pose inherently contains very little

nformation about the subject identity. 

In this paper, we propose to use generative adversarial net-

orks (GAN) as a means to robustly recognising gait against ad-

erse factors such as view angle, clothing and carrying condition

imultaneously using only a single model. GAN is inspired by the

wo person zero-sum game in Game Theory, developed by Good-

ellow et al. [27] in 2014. The result of the theory is a model that

s composed of one generative model G and another discriminative

odel D. While the generative model captures the distribution of

he training data, the discriminative model is a second classifier

hat determines whether the input is real or generated. In order

o optimize the parameters of these two models, the problem can

e cast as a minimax two-player game. In this competitive learn-

ng scenario, the generative model attempts to produce a realistic

mage from an input random vector z . As we know the early GAN

odel is too flexible in generating image. In [28] , Mirza et al. fed
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Fig. 1. A gait energy image (the right most one) is produced by averaging all the silhouettes (all the remaining images on the left) in one gait cycle. 
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 conditional parameter y into both the discriminator and genera-

or as additional input layer to increase the constraint. Meanwhile,

enton et al. proposed a method using a cascade of convolutional

etworks within a Laplacian pyramid framework to generate im-

ges in a coarse-to-fine fashion. Unfortunately, early GANs are not

nly hard to train, but its generator often produces nonsensical

utputs. To overcome these limitations, Radford et al. proposed the

eep Convolutional GAN [29] which contains a series of strate-

ies such as using fractional-strided convolutions and batch nor-

alization. This makes GAN more stable in training. Recently, Yoo

t al. [30] presented an image-conditional generation model which

ontains a vital component named domain-discriminator. This dis-

riminator ensures that a generated image is relevant to its input

mage. Furthermore, this method proposes domain transfer using

ANs at the pixel level; and is subsequently known as pixel-level

omain transfer GAN, or PixelDTGAN in [30] . 

. Proposed method 

To reduce the effect of variations, we propose to use GAN as a

egressor to generate an invariant canonical gait image. The gen-

rated canonical image contains a subject’s gait viewed from the

ide, wearing a normal (standardized) cloth but without carrying

nything. Any gait image appearing from any arbitrary poses is

onverted to the above canonical view because it contains richer

nformation about the gait dynamics. While this is intuitively ap-

ealing, a key challenge that must be addressed is to preserve the

uman identification information in the generated gait images. 

The GaitGANv2 model is trained to generate a canonical gait

mage (normal clothing and without carrying objects at the side

iew) using a sufficiently large training data set. In the test phase,

 gait image is sent to the GAN model and an invariant gait im-

ge that contains human identification information is generated.

he difference between the proposed method and most other GAN

elated methods is that the generated image here can help to im-

rove the discriminant capability, not just generating a gait image

hat appears to be realistic. The most important challenge here is

o preserve human identification when generating a realistically-

ooking gait image. Compared with the previous work, that is Gait-

ANv1 in [31] , GaitGANv2 adopts a multi-loss strategy to optimize

he network to enlarge the inter-class distance whilst reduce the

ntra-class distance, at the same time. 

.1. Gait energy image 

The gait energy image [32] is a popular feature representation

or gait. It is produced by averaging all the silhouettes in a single

ait cycle, as illustrated in Fig. 1 . GEI is well known for its robust-

ess to noise and its efficient computation. The pixel values in a

EI can be interpreted as the probability of pixel positions in GEI

eing occupied by a human body over one gait cycle. According

o the success of GEI in gait recognition, we take GEI as the in-

ut and target image of our method. The silhouettes and energy
mages used in the experiments are produced in the same way as

hose described in [33] . 

.2. Generative adversarial networks for pixel-level domain transfer 

Generative adversarial network (GAN) [27] is a branch of unsu-

ervised machine learning, which is implemented by a system of

wo neural networks competing against each other in a zero-sum

ame framework. A generative model G that captures the data dis-

ribution. A discriminative model D then takes either a real data

rom the training set or a fake image generated from model G

nd estimates the probability of its input having come from the

raining data set rather than the generator. In the GAN for image

ata, the eventual goal of the generator is to map a small dimen-

ional space z to a pixel-level image space with the objective that

he generator can produce a realistic image given an input random

ector z . Both G and D could be a non-linear mapping function. In

he case where G and D are defined by multilayer perceptrons, the

ntire system can be trained with back propagation. 

The input of the generative model can be an image instead of a

oise vector. GAN can realize pixel-level domain transfer between

nput image and target image such as PixelDTGAN proposed by Yoo

t al. [30] . PixelDTGAN can transfer a visual input into different

orms which can then be visualized through the generated pixel-

evel image. In this way, it simulates the creation of mental images

rom visual scenes and objects that are perceived by the human

yes. In that work, the authors defined two domains, a source do-

ain and a target domain. The two domains are connected by a

emantic meaning. For instance, the source domain is an image of

 dressed person with variations in pose and the target domain is

n image of the person’s shirt. So PixelDTGAN can transfer an im-

ge from the source domain which is a photo of a dressed person

o the pixel-level target image of shirts. Meanwhile the transferred

mage should look realistic yet preserving the semantic meaning.

he framework consists of three important parts as illustrated in

ig. 2 . While the real/fake discriminator ensures that the generated

mages are realistic, the domain discriminator, on the other hand,

nsures that the generated images contain semantic information. 

The first important component is a pixel-level converter which

re composed of an encoder for semantic embedding of a source

mage and a decoder for producing a target image. The encoder

nd decoder are implemented by convolution neural networks.

owever, training the converter is not straightforward because

he target is not deterministic. Consequently, on the top of con-

erter, additional loss function is needed to constrain the target

mage produced. Therefore, Yoo et al. connected a separate net-

ork named domain discriminator on top of the converter. The

omain discriminator takes a pair of a source image and a target

mage as input, and is trained to produce a scalar probability of

hether the input pair is associated or not. The loss function L D 
A 

n [30] for the domain discriminator D A is defined as 

 

D 
A (I S , I) = −t · log[ D A (I S , I)] + (t − 1) · log[1 − D A (I S , I)] , 
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Fig. 2. The framework of PixelDTGAN [30] , which consists of three important parts, 

one converter and two discriminators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The source and the target images. ‘NM’ stands for the normal condition; ‘BG’ 

for carrying a bag; and ‘CL’ for dressing in a coat as defined in CASIA-B dataset. 

Fig. 4. The structure of the converter which transforms the source images to a tar- 

get one as shown in Fig. 3 . 
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L  
s.t. t = 

{ 

1 i f I = I T 
0 i f I = 

ˆ I T 
0 i f I = I −

T 
. 

(1)

where I S is the source image, I T is the ground truth target, I −
T 

the

irrelevant target, and 

ˆ I T is the generated image from converter. 

Another component is the real/fake discriminator which similar

to the traditional GAN in that it is supervised by the labels of real

or fake, in order for the entire network to produce realistic images.

Here, the discriminator produces a scalar probability to indicate if

the image is real or not. The discriminator’s loss function L D R , ac-

cording to [30] , takes the form of binary cross entropy: 

L D R (I) = −t · log[ D R (I)] + (t − 1) · log[1 − D R (I)] , 

s.t. t = 

{
1 i f I ∈ { I i } 
0 i f I ∈ { ̂ I i } . (2)

where { I i } contains real training images and { ̂ I i } contains fake im-

ages produced by the generator. 

Labels are given to the two discriminators, and they supervise

the converter to produce images that are realistic while keeping

the semantic meaning. 

3.3. GaitGANv2: GAN for gait recognition 

Inspired by the pixel-level domain transfer in PixelDTGAN, Gait-

GANv2 is proposed to transform the gait data from any view, cloth-

ing and carrying conditions to the side view with normal clothing

and without carrying objects. Additionally, identification informa-

tion is preserved. 

We set the GEIs at all the viewpoints in normal walking, with

clothing and carrying variations as the source and the GEIs of nor-

mal walking at 90 ° (side view) as the target, as shown in Fig. 3 .

The converter contains an encoder and a decoder as shown in

Fig. 4 . 

There are two discriminators. The first one is a real/fake dis-

criminator which is trained to predict whether an image is real or

not. The structure of the real/fake discriminator is the same with

that in [30] . If the input GEI is from a real gait image at 90 ° view

in normal walking, the discriminator will output 1. Otherwise, it

will output 0. The domain discriminator in [30] has been adopted

to a identification discriminator in the proposed method. The dif-

ference is that a multiple loss strategy is involved to identification.

The loss strategy is described in the following part. 
.4. Loss function 

In order to generate GEIs with large inter-class variations and

educe the intra-class variations, which is preserving identification

nformation, we adopt a multi-loss strategy to optimize the Gait-

ANv2 network. The softmax loss and the contrastive loss are em-

loyed in the proposed method. In our previous work [31] , to

reserve the identification information, identification discriminator

hich is similar to the domain discriminator in [30] is involved.

he identification discriminator takes a source image and a target

mage as input, and is trained to produce a scalar probability of

hether the input pair is the same person. If the two input im-

ges are from the same subject, the output should be 1. If they

re input images belonging to two different subjects, the output

hould be 0. Likewise, if the input is a source image and the tar-

et one is generated by the converter, the discriminator function

hould output 0. This identification discriminator has made a great

ontribution to preserve the identification information, however, it

oes not directly constrain the generated GEIs as we need to use

he generated GEIs as feature in the gait recognition. For the pur-

ose of better preserving identification information and increasing

he accuracy of recognition, we use the multi-loss strategy to con-

train the generated GEIs rather than identification discriminator. 

.4.1. Softmax loss 

The class labels give strong supervised information to help

earning the discriminant features. The softmax loss is the most

ommonly used in classification tasks in neural networks [34,35] .

he softmax loss can promote the generated GEIs with large inter-

lass variations, it is defined as: 

oss S = −
m ∑ 

i =1 

log 
e 

W 

T 
y i 

x i + b y i ∑ n 
j=1 e 

W 

T 
j 

x i + b j 
(3)
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Table 1 

The experimental design for CASIA-B dataset. 

Training set ID: 001–062, nm01-nm06, bg01, bg02, cl01, cl02 

Gallery set ID: 063–124, nm01-nm04 

Probe set ProbeNM ID: 063–124, nm05, nm06 

ProbeBG ID: 063–124, bg01, bg02 

ProbeCL ID: 063–124, cl01, cl02 

ProbeALL ID: 063–124, nm05, nm06, bg01, bg02, cl01, cl02 

Table 2 

Details of the encoder. The first four layers of encoder is the same as real/fake 

discriminator. After Conv.4, the real/fake and identification discriminator connect 

Conv.5 to output binary value. 

Layers 

Number of 

filters Filter size Stride Batch norm 

Activation 

function 

Conv.1 96 4 × 4 × {1,1,2} 2 N L-ReLU 

Conv.2 192 4 × 4 × 96 2 Y L-ReLU 

Conv.3 384 4 × 4 × 192 2 Y L-ReLU 

Conv.4 768 4 × 4 × 384 2 Y L-ReLU 

Table 3 

Details of the decoder. F denotes fractional-stride. 

Layers 

Number of 

filters Filter size Stride Batch norm 

Activation 

function 

F-Conv.1 768 4 × 4 × 384 1/2 Y L-ReLU 

F-Conv.2 384 4 × 4 × 192 1/2 Y L-ReLU 

F-Conv.3 192 4 × 4 × 96 1/2 Y L-ReLU 

F-Conv.4 96 4 × 4 × 1 1/2 N Tanh 
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here x i ∈ R 

d is the input of the loss layer, and it is generated from

he i th GEI that belongs to the y i th class. d , W ∈ R 

d×n and b ∈ R 

d 

enote the GEI dimension, last connected layer and bias term, re-

pectively. 

.4.2. Contrastive loss 

The softmax loss increases the inter-class distance, but it has

ot a strong capacity to reduce the variations of identical hu-

an gaits. Many researchers employ another loss function to con-

train the feature, such as Liao et al. [25] use the CTLoss and Wen

t al. [36] adopt the center loss. In order to extract powerful fea-

ures, we adopt an additional contrastive loss, which is helpful not

nly to increase the inter-class distance, but also can reduce the

ntra-class variations. The contrastive loss is defined as: 

oss C = 

1 

2 

y ‖ f i − f j ‖ 

2 
2 + 

1 

2 

(1 − y ) max (λ − ‖ f i − f j ‖ 

2 
2 , 0) (4)

here f i and f j are generated from two input GEIs, y = 1 when the

wo inputs are from the same subject, then the f i and f j will to be

lose. y = 0 means that the two inputs are from different subjects.

n this case, the distance of f i and f j is limited to be larger than

argin λ. 

.4.3. Fusion of loss functions 

As in [25,36] , the joint contrastive loss and the softmax loss are

mployed for constrain the quality of the generated GEIs. If only

he softmax loss is employed, the learned features could cause a

arge intra-class variations. So it is necessary to fuse the two loss

unctions with the two learning objectives. The fusion is given in

q. (5) . 

 = Loss S + Loss C 

= −
m ∑ 

i =1 

log 
e 

W 

T 
y i 

x i + b y i ∑ n 
j=1 e 

W 

T 
j 

x i + b j 

+ 

1 

2 

y ‖ f i − f j ‖ 

2 
2 + 

1 

2 

(1 − y ) max (λ − ‖ f i − f j ‖ 

2 
2 , 0) (5) 

. Experiments and analysis 

.1. Datasets 

To evaluate the proposed method, two datasets are involved.

ne is CASIA-B with 124 subjects and another is OU-ISIR Large

opulation Dataset with 4007 subjects. 

CASIA-B gait dataset [33] is one of the popular public gait

atasets which has been widely used to evaluate different gait

ecognition methods. It was created by the Institute of Automation,

hinese Academy of Sciences in January 2005. It consists of 124

ubjects (31 females and 93 males) captured from 11 views. The

iew range is from 0 ° to 180 ° with 18 ° interval between two near-

st views. There are 11 views for each subject, as shown in Fig. 5 .

here are 6 sequences for normal walking (“nm”), 2 sequences for

alking with a bag (“bg”) and 2 sequences for walking in a coat

“cl”). 

OU-ISIR Large Population Dataset [37] gait dataset is a very

arge dataset which contains 4007 subjects ranging from 1 to 94

ears old. The OU-ISIR dataset contains 4 views(55 °, 65 °, 75 °, 85 °)
nd it includes two sequences under the normal walking condi-

ions. It allows us to investigate the upper limit of gait recognition

erformance in a more statistically reliable way. Fig. 6 shows some

amples from OU-ISIR dataset. 

.2. Experimental design 

In our experiments using CASIA-B dataset, the three types of

ait data including “nm”, “bg” and “cl” are all involved. We put the
ix normal walking sequences, two sequences with coat and two

equences containing walking with a bag of the first 62 subjects

nto the training set and the remaining 62 subjects into the test

et. In the test set, the first 4 normal walking sequences of each

ubjects are put into the gallery set and the others into the probe

et as it is shown in Table 1 . There are four probe sets to evaluate

ifferent kind of variations. 

We also evaluate the proposed method on OU-ISIR Large Popu-

ation dataset and the model is the same as in CASIA-B used in the

xperiment. We apply five-fold cross-validation on the OU-ISIR and

ivide all the subjects into five sets randomly. We keep one set for

esting and four sets for training in each run. In the training phase,

he target image is 85 ° GEI which is closest the 90 ° GEI among the

our views. The GAN model is trained using CASIA-B data firstly,

nd then finetuned using the training set of OU-ISIR. In each test

et, the first sequence is put into gallery set and the rest sequence

s put into probe set. 

.3. Model parameters 

In the experiments, we used a similar setup to that of [30] ,

hich is shown in Fig. 4 . The converter is a unified network that

s end-to-end trainable but we can divide it into two parts, an en-

oder and a decoder. The encoder part is composed of four con-

olutional layers to abstract the source into another space which

hould capture the personal attributes of the source as well as pos-

ible. Then the result feature z is fed into the decoder in order to

onstruct a relevant target through the four decoding layers. Each

ecoding layer conducts fractional stride convolutions, where the

onvolution operates in the opposite direction. The details of the

ncoder and decoder structures are shown in Table 2 and Table 3 .

he F-Conv layers in Table 3 have fractional-strides which is 1/2

n our experiments. F-Conv layers can upsample the inputs. The

tructure of the real/fake discriminator is similar to the encoder’s

rst four convolution layers. The layers of the discriminators are all

onvolution layers. 
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Fig. 5. Normal walking sequences at 11 views from CASIA B dataset. 

Table 4 

The recognition Rates of ProbeNM, training with sequences containing three conditions. 

Probe angle θ p (normal walking #5-6) 

0 18 36 54 72 90 108 126 144 162 180 

Gallery angle θ g (normal #1-4) 0 100.0 80.65 59.68 46.77 29.84 32.26 29.03 35.48 38.71 66.94 79.84 

18 83.87 98.39 95.97 73.39 48.39 47.58 42.74 51.61 66.94 73.39 70.97 

36 60.48 90.32 95.97 90.32 79.03 66.13 62.10 63.71 66.94 60.48 50.81 

54 38.71 69.35 91.13 95.97 92.74 86.29 84.68 81.45 81.45 54.84 33.87 

72 25.81 46.77 67.74 88.71 97.58 95.16 94.35 91.13 70.97 41.13 25.00 

90 28.23 42.74 61.29 84.68 96.77 97.58 95.97 89.52 70.97 36.29 21.77 

108 24.19 41.13 57.26 82.26 95.16 95.97 97.58 95.97 77.42 36.29 23.39 

126 31.45 50.81 64.52 82.26 89.52 91.13 95.97 99.19 97.58 58.87 29.03 

144 37.90 59.68 70.97 73.39 68.55 67.74 82.26 95.97 10 0.0 0 77.42 46.77 

162 66.13 75.00 69.35 59.68 39.52 38.71 45.97 63.71 89.52 99.19 79.84 

180 83.87 62.10 49.19 35.48 27.42 26.61 27.42 33.06 55.65 83.06 99.19 

Fig. 6. Sample of 4 views from OU-ISIR dataset. 
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4.4. Experimental results on CASIA-B dataset 

To evaluate the robustness of the proposed GaitGANv2, three

kinds of variations have been evaluated, and they are view, cloth-

ing, and carrying variations. The experimental results on CASIA-

B dataset are shown in Tables 4–6 . In the experiments of Table 4 ,

the first four normal sequences at a specific view are put into the

gallery set, and the last two normal sequences at another view are

put into the probe set. Since there are 11 views in the dataset,

there are 121 pairs of combinations. In each table, each row cor-

responds to a view angle of the gallery set, whereas each column

corresponds to the view angle of the probe set. The recognition

rates of these combinations are listed in Table 4 . For the results in

Table 5 , the main difference with those in Table 4 are the probe

sets. The probe data contains images of people carrying bags, and

the carrying conditions are different from that of the gallery set.

The probe sets for Table 6 contain gait data with coats. 
.5. Comparisons with GEI+PCA, SPAE and GaitGANv1 

Since GEIs are used as input to extract invariant features,

e first compare the proposed GaitGANv2 with GEI+PCA [32] ,

PAE [22] and GaitGANv1 [31] . The experiment protocols in terms

f the gallery and probe sets for GEI+PCA and SPAE are exactly

he same as those presented in Table 1 . Due to limited space, we

nly list 4 probe angles with a 36 ° interval. Each row in this fig-

re represents a probe angle. The compared angles are 36 °, 72 °,
08 ° and 144 °. The first column of Fig. 7 compares the recognition

ates of the proposed with GEI+PCA, SPAE and GaitGANv1 at dif-

erent probe angles in normal walking sequences. The second col-

mn shows the comparison with different carrying conditions, and

he third shows the comparison with different clothing. As illus-

rated in Fig. 7 , the proposed GaitGANv2 outperforms GEI+PCA at

ll probe angle and gallery angle pairs. Meantime, its performance

ometimes is similar to that of SPAE and better than SPAE at most

f the time. The results show that the proposed method can ex-

ract the gait feature and achieves state-of-the-art performance. 

We also compared the recognition rates without view varia-

ion. This can be done by taking the average of the rates on the

iagonal of Tables 4, 5 and 6 . The corresponding average rates of

EI+PCA and SPAE are also obtained in the same manner. The re-

ults are shown in Fig. 8 . When there is no clothing variation, the

roposed method achieve a high recognition rate which is better

han GEI+PCA and SPAE. 
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Fig. 7. Comparisons with GEI+PCA [32] , SPAE [22] and GaitGANv1 [31] at different probe angle. Each row represents a probe angle and each column represents different 

conditions probe sequences. The blue lines are achieved by proposed method. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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Table 5 

The recognition rates of ProbeBG, training with sequences containing three conditions. 

Probe angle θ p (walking with bag #1-2) 

0 18 36 54 72 90 108 126 144 162 180 

Gallery angle θ g (normal #1-4) 0 84.68 57.26 37.90 21.77 19.35 13.71 15.32 19.35 28.23 47.58 59.68 

18 65.32 82.26 66.94 42.74 31.45 30.65 29.84 38.71 41.94 58.87 45.97 

36 38.71 67.74 74.19 66.94 49.19 41.94 37.10 52.42 47.58 45.97 33.87 

54 33.06 54.03 68.55 79.64 69.35 52.42 52.42 59.68 51.61 35.48 22.58 

72 20.97 33.06 50.81 60.48 72.58 63.71 61.29 63.71 47.58 28.23 13.71 

90 22.58 29.03 42.74 52.42 67.74 70.97 63.71 62.90 48.39 29.03 12.90 

108 22.58 25.00 40.32 56.45 71.77 70.16 65.32 66.94 56.45 29.03 15.32 

126 22.58 35.48 45.97 55.65 64.52 57.26 62.90 78.23 70.16 39.52 21.77 

144 34.68 41.13 44.35 47.58 50.61 44.35 50.61 67.74 74.19 51.61 35.48 

162 49.19 52.23 43.55 37.90 32.25 25.81 27.42 39.52 62.90 79.03 54.84 

180 62.10 38.71 25.00 17.74 20.16 15.32 11.29 13.71 33.06 56.45 77.42 

Table 6 

The recognition Rates of ProbeCL, training with sequences containing three conditions. 

Probe angle θ p (walking with coat #1-2) 

0 18 36 54 72 90 108 126 144 162 180 

Gallery angle θ g (normal #1-4) 0 33.06 22.58 19.35 15.32 11.29 9.68 9.68 15.32 17.74 20.16 26.61 

18 27.42 45.97 41.13 25.81 19.35 17.74 16.94 22.58 24.19 27.42 24.19 

36 25.00 37.90 44.35 44.35 29.03 24.19 19.35 27.42 22.58 22.58 15.32 

54 18.55 25.00 34.68 44.35 37.10 29.84 29.03 29.84 24.19 16.94 9.68 

72 19.35 25.81 31.45 45.97 55.65 39.52 37.10 32.26 16.94 17.74 8.87 

90 14.52 23.39 26.61 40.32 50.00 43.55 38.71 30.65 19.35 16.13 8.87 

108 12.10 16.13 25.00 39.52 44.35 36.29 45.97 38.71 25.81 18.55 8.06 

126 17.74 19.35 25.81 32.26 36.29 33.06 39.52 44.35 37.90 23.39 12.90 

144 16.94 22.58 25.81 30.65 32.26 25.81 30.65 40.32 40.32 31.45 18.55 

162 29.84 23.39 23.39 20.97 14.52 8.06 14.52 23.39 34.68 41.13 26.61 

180 25.81 15.32 12.90 12.90 8.06 5.65 8.06 13.71 18.55 24.19 33.06 
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Fig. 8. The average recognition rates without view variation with GEI+PCA, SPAE and GaitGANv1 at three conditions. 
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4.6. Comparisons with state-of-the-art 

In order to better analyse the performance of the proposed

method, we further compare the proposed GaitGANv2 with ad-

ditional state-of-the-art methods including FD-VTM [6] , RSVD-

TM [7] , RPCA-VTM [8] , R-VTM [9] , GP+CCA [10] , C3A [12] ,

SPAE [22] and GaitGANv1 [31] . The probe angles selected are 54 °,
90 ° and 126 ° as in experiments of those methods. The experimen-

tal results are listed in Fig. 9 . From the results we can find that the

proposed method outperforms others when the angle difference

between the gallery and the probe is large. This shows that the
odel can handle large viewpoint variation well. When the view-

oint variation is not large enough, the proposed method can also

mprove the recognition rate obviously. 

In Table 7 , the experimental results of C3A [12] , ViDP [16] ,

NN [19] , SPAE [22] , GaitGAN [31] and the proposed method are

isted. Here we want to emphasis that the proposed method ob-

ains similar results using only one generative model for any views,

nd for clothing or carrying condition variations, simultaneously.

eanwhile, this method is the first use of GAN for gait recogni-

ion and the experimental results show that GAN is feasible for

ait recognition under significant variations. 
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Fig. 9. Comparisons with existing methods at probe angles (a)54 °, (b)90 ° and 

(c)126 °. The gallery angles are the rest 10 angles except the corresponding probe 

angle. 

Table 7 

Average recognition rates at probe angles 54 °, 90 ° and 126 °. 
The gallery angles are the rest 10 angles except the correspond- 

ing probe angle. The values in the right most column are the 

averages rate at the three probe angles 54 °, 90 ° and 126 °. 

Method Probe angle 

54 ° 90 ° 126 ° Average 

C3A [12] 56.64% 54.65% 58.38% 56.56% 

ViDP [16] 64.2% 60.4% 65.0% 63.2% 

CNN [19] a 77.8% 64.9% 76.1% 72.9% 

SPAE [22] 63.31% 62.1% 66.29% 63.9% 

GaitGANv1 [31] 64.52% 58.15% 65.73% 62.8% 

GaitGANv2 71.69% 64.76% 70.16% 68.87% 

a Models are trained with GEIs of the first 24 subjects. 

Table 8 

Experimental results on OU-ISIR dataset. 

Probe angle Gallery angle Average 

55 ° 65 ° 75 ° 85 ° CNN [19] GaitGANv2 

55 ° − 94.4% 93.2% 88.2% 91.6% 91.9 % 

65 ° 94.9% − 96.2% 94.0% 92.3% 95.0 % 

75 ° 91.7% 95.5% − 95.9% 92.4% 94.4 % 

85 ° 91.7% 95.5% 96.5% − 94.8 % 94.6% 

Table 9 

The recognition rate for 4 identical views on OU-ISIR 

dataset. 

View 55 ° 65 ° 75 ° 85 °

NN [37] 84.7% 86.6% 86.9% 85.7% 

CNN [19] 98.8% 98.9% 98.9% 98.9% 

GaitGANv2 96.3% 96.7% 96.5% 95.9% 
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.7. Experimental results on OU-ISIR dataset 

OU-ISIR dataset is also used to evaluate the proposed method.

n the experiments, the five-fold cross-validation is involved. The

ecognition rates of experiments on OU-ISIR dataset is shown in

ables 8 and 9 . There is view variation in the experiments of

able 8 and the proposed method outperforms CNN [19] . The re-

ults in Table 9 are for identical views. Our results are also much

etter than the baseline reported by the dataset authors [37] . How-

ver, the results reported by CNN [19] are better. From the results

t can be shown that the proposed method has an obvious advan-

age on gait recognition with view variation. That means the GAN

odel can generated better feature which is robust to variations. 

. Conclusions and future work 

In this paper, we applied GaitGANv2 which is a variant of gen-

rative adversarial networks, PixelDTGAN, adopted to deal with

ariations in viewpoint, clothing and carrying conditions simulta-

eously in gait recognition. Extensive experiments on two large

atasets show that the GaitGANv2 can transform gait images ob-

ained from any viewpoint to the side view and remove the vari-

tions of clothings and carrying without the need to estimate the

ubject’s view angle, clothing type and carrying condition before-

and. Experimental results show that the recognition rate of pro-

osed model is comparable to that of the state-of-the-art methods.

ndeed, GaitGANv2 is shown to be promising for practical applica-

ions in video surveillance. 

There are however, a number of limitations which need to be

ddressed in future work. The proposed method shows that GAN

an be used to eliminate the variations and keep identification in-

ormation of subjects. If we use more complex and powerful net-

orks, better performance should be achieved. We believe that

etter GAN technologies will further improve gait recognition in

uture. Besides gait recognition, different recognition and classifi-

ation problems under pose and other variations could also benefit

rom that. 
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