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Abstract

Gait recognition has proven to be effective for long-distance human recog-

nition. View angle, one form of the gait variations, can change the human ap-

pearance greatly and reduce its performance. For most existing gait datasets,

the angle interval between the two nearest views is large. This means that the

angle does not cover the entire view space and prevent better view-invariant

feature extraction for CNN. Additionally, the angles between cameras and peo-

ple vary widely in typical camera deployments for monitoring people. In this

paper, we, therefore, propose a novel view synthesis approach based on view

space covering to deal with the challenge of large-angle interval. Specifically, a

Dense-View GEIs Set (DV-GEIs) is introduced to expand this view approach,

from 0◦ to 180◦ with 1◦ interval. GEI is a popular feature representation for

gait, which can be obtained by aligning human silhouettes and averaging them

in a gait cycle. In order to synthesize DV-GEIs set, Dense-View GAN (DV-

GAN) is proposed to model the gait attribute distribution and generate new

GEIs with various views. DV-GAN consists of a generator, discriminator, and

monitor, where the monitor is designed to preserve human identification and

?

∗Corresponding author
Email addresses: rlyfv@mail.umkc.edu (Rijun Liao), weizhi.an@mavs.uta.edu (Weizhi

An), lizhu@umkc.edu (Zhu Li), ssb@umd.edu (and Shuvra S. Bhattacharyya)

Preprint submitted to Journal of LATEX Templates April 20, 2021



72°
90°

144°

54°

36°

0°

18°

108°

126°

162°

180°

72°
90°

144°

54°

36°

0°

18°

108°

126°

162°

180°

Original GEIs Set DV-GEIs Set

DV-GAN

Figure 1: Dense-View GEIs Set (DV-GEIs): view space covering to lighten the burden of

view-invariant feature extraction for a CNN and make the feature more discriminative, view

angle from 0◦ to 180◦ with 1◦ interval. DV-GAN is proposed to synthesize realistic samples

with various view angle conditions. (Sample images from CASIA-B dataset [1])

view information. Compared with our previous work DV-GAN-pre, we add a

center for each object in the monitor to improve the discriminative capability of

synthesized images during the modeling process. The proposed method is eval-

uated on the CASIA-B and OU-ISIR dataset. The experimental results show

that view space covering is an effective way to light the burden of view-invariant

feature extraction for CNN and make the feature more discriminative. We be-

lieve the idea of view space covering will further improve the development of

gait recognition.

Keywords: Gait Recognition, View Space Covering, Dense-View GEIs,

Dense-View GAN

1. Introduction

1.1. Motivation

Gait is a popular type of biometric feature for human identification. Gait

recognition is a technology that can recognize human identity by human’s walk-

ing pattern. It has many potential applications in video surveillance and public5

safety. This is because gait can identify subjects at longer distances compared

with other features like face, iris, palmprint, and fingerprint. In addition, gait

provides a unique possibility to identify a subject without people’s cooperation,
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which can make a great contribution to catching criminals. Therefore, gait

recognition is an important area of study for researchers.10

However, gait recognition is often challenging in real applications. This

is because there are many potential sources of variation that can change the

human shape drastically, such as view, clothing, and carrying a bag. Such

variation can have a strong negative influence on gait recognition performance.

The view angle is one of the most common sources of variation. This is because15

it is difficult to synchronize changes in view with the direction in which subjects

are walking. Moreover, the angles between cameras and people vary widely in

typical camera deployments for monitoring people.

Most existing gait datasets [1, 2, 3] are limited in the variety of view condi-

tions that are covered. Typical datasets exhibit large angular distances between20

the two nearest views. For example, the interval between the two closest views

in the CASIA-B dataset [1] is 18◦. This dataset includes 11 views from 0◦ to

180◦, as shown in the left image of Figure 1. As additional examples, interval

angles on the OU-ISIR [3] and OU-MVPL [2] datasets are 10◦ and 15◦, respec-

tively. OU-MVPL [2] has 14 views and OU-ISIR [3] has only 4 views. A limited25

number of view angles has a negative influence on view-invariant feature ex-

traction. This problem can be overcome with a larger number of view angles,

meaning a smaller interval (e.g., 1◦) between closest views. However, it is very

challenging to collect this type of data manually.

In this paper, we propose a novel gait energy image (GEI) view synthesis30

solution based on view space covering to deal with the challenge of large-angle

interval. The goal of DV-GEIs is to cover the whole gait view space, and further

extract better view-invariant feature from dense view sets.

1.2. Method Overview and Contributions

An overview of the proposed method is shown in Figure 2, which is based on35

a GAN-CNN framework. Given a gait dataset, the training GEIs set is used to

train a DV-GAN for gait attribute distribution modeling and sampling. A large

number of GEIs with various views is synthesized to cover the entire view space
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Figure 2: Overview of our proposed GAN-CNN based framework. Dense-View GAN (DV-

GAN) is proposed to model the gait attribute distribution and synthesize new GEIs with

various views. Then, both synthesized GEIs and original training GEIs are combined to

obtain the Dense-View GEIs set, which is used to train a deep CNN for extracting view-

invariant feature. In the inference stage, probe and gallery features are used to measure the

similarity between the gallery and probe GEIs, and then predict the human IDs label.

from the trained DV-GAN model. Then, both synthesized GEIs and the original

training GEIs are combined to obtain the Dense-View GEIs set, which is used to40

train a deep CNN for extracting view-invariant feature. In the inference stage,

probe GEIs and gallery GEIs are used to extract probe and gallery features

from the trained CNN model. Because the number of subjects will be changed

in the inference stage. A classifier can not be designed to directly decide the

IDs, so the similarities between the probe and gallery features are evaluated to45

predict the human IDs by the nearest neighbor algorithm.

A preliminary version [4] of this work was published in the IEEE Interna-

tional Joint Conference on Biometrics (IJCB) 2020. We denote our preliminary

work [4] DV-GEIs as DV-GEIs-pre and this work as DV-GEIs, DV-GAN as

DV-GAN-pre, and this work as DV-GAN. We extend our work in two aspects.50

1) One is the extension of DV-GAN, we extend our monitor by adding an ad-

ditional center for each object during synthesizing to minimize the intra-class

distances of synthesized images, which enables the synthesized GEI to not only
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Figure 3: The overall system diagram of Dense-View GAN (DV-GAN), which includes the

generator G, discriminator D and monitor M . The generator G consists of an encoder GE

and a decoder GD. DV-GAN is proposed to model the gait attribute distribution.

looks realistic but also has more discriminative capability. 2) In our previous

work, Dense-View GEIs (DV-GEIs) set covers the whole view space only under55

normal walking conditions. In order to enable gait recognition can deal with

multi-variations, we extend DV-GEIs set under carrying a bag and wearing

coat conditions. That is, DV-GEIs set also covers all kinds of view angles in the

perspective of carrying a bag or clothing condition.

In summary, our method in this paper has the following contributions:60

• We propose a novel gait energy image (GEI) view synthesis solution based

on view space covering, which provides a much denser sampling to lighten

the burden of view-invariant feature extraction for CNN and make the

feature more discriminative. Specifically, a Dense-View GEIs Set (DV-

GEIs) is introduced to expand this view approach, from 0◦ to 180◦ with65

1◦ interval, as shown in Figure 1.

• A GAN-CNN based framework is proposed to improve gait robustness to

view variation. DV-GAN is used to solve the key issue of building the

DV-GEIs dataset, while a CNN is employed for feature extraction and

prediction of human IDs, as shown in Figure 2. One advantage of the70
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GAN-CNN framework is that although DV-GAN is required to synthesize

images at training time (left part of Figure 2), DV-GAN is not needed

again during the inference stage (right part of Figure 2), which enhances

its utility in real applications.

• A novel Dense-View GAN (DV-GAN) is proposed to model the gait view75

attribute distribution and develop the perspective space to cover the gait

view space. Unlike a traditional GAN, which mainly consists of a generator

and discriminator, DV-GAN includes an additional monitor, which not

only can maintain human identification and view information very well,

but also improves the discriminative capability of synthesized images, as80

shown in Figure 3.

The rest of this paper is organized as follows. Section 2 introduces the latest

methods that handle with variances in gait recognition. The proposed method

is presented in Section 3, including the structure of DV-GAN and how to cover

the gait view space. Experiments and evaluations are presented in Section 4.85

The last section, Section 5, illustrates conclusions.

2. Related Work

In this section, we will give a brief review of existing gait recognition meth-

ods. The recent methods of gait recognition can be roughly divided into two

categories, namely template-based and sequence-based. In addition, we will90

briefly review some researches based on synthesized samples to improve original

performance.

2.1. Template-based methods

One common pipeline of template-based methods are 1) get the human sil-

houettes by background subtraction in each frame sequence; 2) create a gait95

template by aligning the silhouettes; 3) extract invariant feature through some

machine learning or deep learning approaches. 4) and then compute the simi-

larities between each of the two invariant features. GEI+PCA [5] is one of the
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classic methods, it has a good performance when there are no obvious variations.

But it is difficult to deal with view angle variations.100

Previous methods generally divide this pipeline into two parts, template

creation, and template matching. Gait Energy Image (GEI) template [5] and

Chrono-Gait Image (CGI) template [6] are very popular gait template features.

In template matching methods, the most common method is the view trans-

formation model (VTM) which can transform gait template features from one105

view to another view, reducing the effect of view variation. Yasushi et al. intro-

duced FD-VTM [7] method to extract frequency-domain features of the volume

by Fourier analysis. To further improve the performance of the VTM, RSVD-

VTM [8] was proposed by Worapan et al. which employed Linear Discriminant

Analysis (LDA) and Singular Value Decomposition (SVD) to optimize the ob-110

tained GEI feature vectors. In order to deal with large intra-class variations,

Zheng et al. proposed RPCA-VTM [9] to establish a robust view transformation

model by using robust principal component analysis. Zheng et al. [9] found out

a shared linear correlated low-rank subspace has a positive influence on robust

to viewing angle variation.115

Above VTM-based methods have made big progress in dealing with the

cross-view problem in gait recognition. However, a view transformation model

of those methods can only convert a specific angle to another one. And its

performance of the model depends heavily on the accuracy of the view angle

estimation. In addition, they need to know the angles of the probe and gallery120

before extracting gait features. This means that a lot of models are needed

because each view needs one model, which led to some challenges in the real

application.

To deal with the limitation of each angle needs one model, some researchers

have achieved view-invariant transformation only using one model. For in-125

stance, Hu et al. [10] proposed a view-invariant discriminative projection (ViDP)

method to improve the discriminative ability by iteratively learning the low di-

mensional geometry and finding the optimal projection. What’s more, Hu et

al. [7] capture nonlinear manifolds and reduce dimensional by combining the
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enhanced Gabor (EG) representation of GEI and the regularized local tensor130

discriminant analysis (RLTDA) method. However, the method is sensitive to

initialization. In the following years, Yu et al. used only one uniform model to

extract view-invariant feature. SPAE [11] was proposed by him to synthesize

the gait feature in a progressive way by stacked multi-layer auto-encoders. In

addition, Yu et al. also proposed GaitGAN [12] and GaitGANv2 [13] to trans-135

form any view gait into the side view gait by using only a uniform model. A

GAN model is taken as a regressor at their proposed methods [12, 13] to create

a canonical side view of a walking gait in normal clothing without wearing a

coat and carrying bag condition. However, the side view transform strategy will

collapse when the view variance is large.140

Recently, a very solid piece of work [14] contributes new knowledge to the

cross-view gait recognition task. Ben et al. [14] proposed coupled patch align-

ment (CPA) and multi-view patch alignment (MPA) to handle gait recognition

across two or more views. Moreover, CPA and MPA produce more favorable

results than the state-of-the-art. Then, they further developed higher-order145

tensor-based methods [15, 16], and discovered the optimal matrix subspace

where the GEIs across views are aligned in both horizontal and vertical co-

ordinates.

2.2. Sequence-based methods

Sequence-based methods directly employ a sequence of human silhouettes or150

other human features based on video as input data rather than a template fea-

ture. In 2017, Liao et al. [17] proposed a pose-based temporal-spatial network

(PTSN) extract the temporal-spatial features from a sequence of 2D human pose

coordinates. To further improve its robustness to view variation, they [18, 19]

generated directly 3D human pose coordinates from a single RBG frame and155

extract invariant feature from them. Human pose coordinates have an advan-

tage that it is invariant to human appearance compared with human silhouettes.

For providing a platform to study human pose information, An et al. [20] cre-

ated a large-scale human pose-based gait database (OUMVLP-Pose) by using
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deep learning-based pose estimation algorithms. Pose-based methods are ro-160

bust to human shape, but their performance still needs to be improved because

human pose coordinates have not enough information compared with human

silhouettes.

Because human silhouettes have rich information compared with human pose

coordinates, Wu et al. [21] used CNN to extract gait feature from a sequence165

of human silhouettes and achieved high performance. Different from [21] which

uses continuous human silhouettes, Chao et al. [22] introduced Gaitset network

to further improve gait recognition performance based on unordered silhouettes

set. In order to make the use of the local gait feature, GaitPart [23] was proposed

by Fan et al. Rather than using the human silhouettes as input data, Zhang170

et al. proposed GaitNet [24] to explicitly disentangle pose and appearance

features from RGB image, and then LSTM-based integration of pose features

would produce the gait feature.

In order to tackle the problem of view variation, there are some popular

works for view-invariant action recognition. An Unsupervised AttentioN Trans-175

fer (UANT) approach was proposed by Ji et al. [25], which can transfer attention

from one selected reference view to arbitrary views. In addition, Ji et al. [26]

proposed a View-guided Skeleton CNN (VS-CNN) which divides full-circle views

(360◦) into four view groups and learns four invariant features from correspond-

ing to four view groups. Different from the approaches of [25, 26] that transfer180

or group views, we synthesize samples with arbitrary views through GAN, and

provide a much denser sampling to lighten the burden for CNN to seek a com-

mon feature space in various views.

Above sequence-based methods can achieve high performance in gait recog-

nition. However, the price of these methods has a high computational cost185

because they need to deal with videos with a large number of images. This

will bring challenges to real-time and low-cost applications. In contrast, the

gait energy image (GEI) [5] is a very popular feature representation for gait

recognition because of its efficient computation and robustness to noise. It can

be obtained by aligning human silhouettes and averaging them in a gait cycle,190
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as shown in Figure 4. The pixel value in the GEI can be represented as the

probability that the human body occupies the pixel location in the GEI during

the gait cycle. Because of the successful experience of GEI in gait recognition,

GEI is employed in our proposed method as the input and target data, the same

as GaitGAN [12] and SPAE [11].195

… =

Figure 4: A gait energy image (GEI) [5] is obtained by aligning human silhouettes and aver-

aging them.

2.3. Sample Synthesis and View Space Covering

Recently, some researchers proposed novel approaches to synthesize samples

and improve original performance in some specific tasks. For examples, Chen

et al. [27] used GAN to generate noise samples and use them in image blind

denoising. Qian et al. [28] combined human pose and GAN to synthesize human200

image in a specific pose for person re-identification. Those methods can greatly

improve its original performance. However, this idea has not been achieved

in the gait recognition task, because it needs to find a suitable solution to

synthesize samples with different conditions. One popular based on GAN work,

GaitGAN [12], has used GAN to transform any view GEI into the side view GEI,205

which effectively improves gait robustness. In contrast, our proposed DV-GAN

is to model the gait attribute distribution and generate samples with various

view angles, rather than view transformation.

A recent work [29] provides a change to synthesize samples with various

view angles to cover the whole gait view space. In [29], authors model the face210

attribute distribution and produce latent vectors that can capture the semantic

information of facial expressions by autoencoder. And then generate a series of

different view angle human faces from left face to right face by linear transfor-

mation z = αzp + (1 − α)zq in latent space. Based on this idea, we propose
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DV-GAN to synthesize the gait images with different view angles with cover the215

whole view space, and further improve its robustness to view variation. Unlike

the above view transformation methods, we generate gait features with dense

views to cover the whole view space and improve the recognition rate on the

cross-view condition.

3. GAN-CNN Based for View Space Covering220

In this paper, we propose a GAN-CNN based framework to cover the whole

view space and further learn better invariant features for gait recognition. View

space is covered by trained Dense-View GAN (DV-GAN). When dealing with

samples with limited view angles, training samples are used to train a DV-GAN

to model the gait attribute distribution. The trained DV-GAN is utilized to225

solve the key issue of building a training dataset Dense-View GEIs (DV-GEIs)

set with various views, and then CNN is employed for view-invariant feature

extraction from DV-GEIs set. The overview of our proposed method can be

seen in Figure 2. In this section, we will give the detail of the structure of

DV-GAN and how to synthesize DV-GEIs set to cover the view space.230

3.1. Dense-View GEIs Set (DV-GEIs)

The purpose of the DV-GEIs set is to cover the view space from angle p to

angle q, as shown in Figure 5. Here, we denote the views of input GEI xp and

xq for angles p and q. The GEI feature sampling from existing features follows

the equation below:

x′ = {GD(z)|z = αzp + (1− α)zq} (1)

where zp = GE(xp), zq = GE(xq), latent space features zp, zq are encoded by

encoder GE which keep the characteristic of gait attribute. The interpolation

is defined by linear transformation z = αzp + (1 − α)zq, where α ∈ [0, 1], and

then z is fed to decoder GD to generate new GEIs.235
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Figure 5: The workflow of view space covering. The latent space zp, zq are encoded by encoder

GE with two input GEIs xp, xq . A large number of views GEIs from p angle to q angle are

synthesized by decoding the latent space z, where z = αzp + (1− α)zq , α ∈ [0, 1].

3.2. Dense-View GAN (DV-GAN)

Unlike the traditional GAN [30, 28] which usually consists of one generator

and one discriminator, our DV-GAN model has three neural networks: generator

G, monitor M and discriminator D, the overall diagram of DV-GAN as shown

in Figure 3.240

3.2.1. Generator

Given an input GEI x, and a target GEI x̂, where x = x̂. The generator

can reconstruct GEI and model gait attribute distribution in latent space and

develop the perspective space. The network is inspired by the pixels to pixels

level idea [31] to reconstruct the GEI image, that is adding L1 norm loss to

make sure the output GEI x̂ = G(z, x) is the same as input x, the generator

loss function is defined as:

min
E,G

LL1(G(z), x) (2)
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Figure 6: The U-net architecture generator of DV-GAN for modelling gait view space distri-

bution.

The network architecture of generator adds skip connections between two

layers to form a U-Net [32] architecture. This is because U-Net [32] struc-

ture allows low-level information to shortcut across the high-level informa-245

tion and effectively boost the quality of the synthesized images, as shown in

Figure 6. In order to use latent space to cover the view space, as shown

in Figure 5, we define U-Net into two parts, encoder GE{e1} and decoder

GD{e2, e3, e4, e5, e6, d1, d2, d3, d4, d5}. The feature map of e1 layer will be de-

fined as latent space z. This is because the U-Net architecture network does not250

allow decoding latent space if other layers’ feature map as latent space z. For

example, if output feature of e2 is defined as latent space z, then GE{e1, e2} and

GD{e3, e4, e5, e6, d1, d2, d3, d4, d5} will be as encoder and decoder respectively.

It allows us to do linear interpolation z = αGE(xp)+(1−α)GE(xq), but it does

not allow us to decode latent space z, because the calculation of feature map255

of d5 requires the feature map of e1 in U-Net structure, while decoder GD does

not include e1 layer.

3.2.2. Discriminator

The discriminator network D is designed to make sure the generated GEIs

are more realistic. A pair of a real GEI x and a synthesized GEI x̂ are taken as

input data and is trained to recognize whether a GEI is real or not. If the input

GEI is from a real GEI, the discriminator output value is 1, otherwise 0. The
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discriminator could make sure the synthesized GEI is more and more similar to

the original GEI. The objective function of the discriminator is:

min
G

max
D

Ex,z pdata(x,z) [logD(x, x)] + Ex,z pdata(x,z) [1− logD(x,G(z))] (3)

3.2.3. Monitor

The monitor is different from traditional GAN, which is designed to preserve

human identification information and view information, as shown in Figure 7.

The monitor has three input GEIs xθ−θ′ , xθ and xθ+θ′ . In the training process,

first, a GEI x̂θ will be synthesized by decoding the latent feature z, where latent

feature z is the mean value of encoded features (zθ−θ′ and zθ+θ′) of two input

GEIs (xθ−θ′ and xθ+θ′). The monitor will then create a scalar probability to

indicate if the synthesized GEI x̂θ is the same as the original GEI xθ or not, so

the view information and identification information would be preserved in the

training processing, the equation as follows:

min
G

max
D

Exθ,z pdata(xθ,z) [logD(xθ, xθ)] + Exθ,z pdata(xθ,z) [1− logD(xθ, x̂θ)]

where x̂θ = G(
1

2
E(xθ−θ′) +

1

2
E(xθ+θ′)) (4)

z

E

2

1

2

1

' −x

𝐺𝐸

' +x

' −z ' +z

x

x̂

+ M Real or
Fake

𝐺𝐸

𝐺𝐷

Figure 7: The structure of the real/fake monitor. Monitor will identify if the generate image x̂θ

is same as the original image xθ or not, to preserve human identification and view information.
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To improve the discriminative capability of synthesized images. We are

inspired by center loss [33] and extend our monitor by assigning an additional

center cyi for each object x̂θi in the monitor, as shown in the Equation 5, where

m represents training batch size, and the subscript i represents the ith sample in

the training batch, x̂θi is the ith synthesized GEI that belongs to the lth class, cli

is the lith class center of synthesized GEI. If the synthesized images x̂θi belong to

the same person yi, then synthesized images would close to the center cyi. From

Equation 5, it would reduce the intra-class distance, and the inter-class distance

is enlarged as a consequence of this optimization. This is because each class has

its own center, and there is a distance between different centers. In the training

stage, samples will be close to their own center, so inter-class distance is also

enlarged. The adversarial training framework provides considerable flexibility

in the composition of two constraints and improves the discriminant capability

of synthesized images.
m∑
i=1

||x̂θi − cyi||22 (5)

4. Experiments and Analysis260

4.1. Datasets

The proposed method is evaluated on CASIA-B dataset [1] with 11 views at

18◦ interval between two closest views and OU-ISIR Large Population Dataset [3]

with 4 views at 10◦ interval, respectively.

CASIA-B gait dataset [1] is one of the popular public gait databases and it265

was created by the Institute of Automation, Chinese Academy of Sciences in

January 2005. It consists of 124 subjects in total, including 31 females and 93

males. Each subject has 10 sequences, 6 sequences of normal walking (NM), 2

sequences of walking with a bag (BG), and 2 sequences of walking with a coat

(CL), which provide a platform to analyze gait in the real environment.270

Some experiments are also performed on OU-ISIR Large Population Dataset [3]

with only 4 views at 10◦ interval between two closest views (55◦,65◦,75◦ and

85◦). OU-ISIR is a very large data set, containing 4007 persons, ranging in age

15



from 1 to 94 years old. Under normal walking conditions, each subject has two

walking sequences. It allows us to research the upper limit of gait recognition275

performance in a more statistically reliable way.

4.2. Experimental Setting

For better comparison with SPAE [11] and GaitGAN [12], our experimental

setting is exactly like theirs. The training set contains the first 62 subjects, and

the test set contains the rest of the subjects. In the test set, the gallery set280

contains the first 4 normal sequences. The probe set contains three different

conditions: the rest 2 normal sequences, 2 walking sequences with a bag, and

2 walking sequences with a coat condition, respectively, as shown in Table 1.

We only generate images in the training set, not in the test set in our proposed

method. One advantage is that although DV-GAN is required to synthesize285

images at training time, DV-GAN is not needed again during the inference

stage, which enhances its utility in real applications.

Table 1: Experimental setting on CASIA-B dataset (NM: normal walking, BG: walking with

a bag, CL: walking with a coat).

Training
Test

Gallery Set Probe Set

ID: 001-062 ID: 063-124 ID: 063-124

NM01-NM06 NM01-NM04 NM05-NM06

BG01-BG02,CL01-CL02 BG01-BG02,CL01-CL02

The setting of the OU-ISIR [3] dataset is similar to that of the CASIA-B

dataset. In the experiment, we randomly divide all subjects into five groups,

reserve one group for testing, and four groups for training to synthesize samples.290

In each test set, the first sequence is put into the gallery set, and the remaining

sequences are put into the probe set.
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4.3. Implementation Details of DV-GAN

We follow the idea of the network structure of Isola et al. [31] and propose

the DV-GAN network. Pix2pix [31] is an open code deal with the challenge of295

image-to-image translation. The network architecture of generator and discrim-

inator can be seen in Table 2 and Table 3. To preserve human identification

and view information, the monitor is proposed in our DV-GAN. The network

architecture of the monitor (Table 4) is the same as that of the discriminator,

but their input data settings are different. The number of input images in the300

discriminator is 2, while the number of input images in the monitor is 3. In

the CASIA-B experiment, we set the θ′ = 18◦ in the Equation 4, where θ ∈

{18◦,36◦,54◦,72◦,90◦,108◦,126◦,144◦,172◦}.

Table 2: Network Architecture of the Generator

Layers
Number

of filters
Filter size Stride

Batch

norm

Activation

function

Conv.1 64 5× 5 2 N L-ReLU

Conv.2 128 5× 5 2 Y L-ReLU

Conv.3 256 5× 5 2 Y L-ReLU

Conv.4 512 5× 5 2 Y L-ReLU

Conv.5 512 5× 5 2 Y L-ReLU

Conv.6 512 5× 5 2 Y L-ReLU

Deconv.1 512 5× 5 2 Y ReLU

Deconv.2 512 5× 5 2 Y ReLU

Deconv.3 256 5× 5 2 Y ReLU

Deconv.4 128 5× 5 2 Y ReLU

Deconv.5 64 5× 5 2 Y ReLU

Deconv.6 64 5× 5 2 N Tanh

After the DV-GAN models the gait attribution distribution, the next step is

to synthesize dense view samples. DV-GEIs with 1◦ interval will be generated by305

trained DV-GAN. We synthesize GEI samples from 0◦ to 180◦ with 1◦ interval
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Table 3: Network Architecture of the Discriminator.

Layers
Number

of filters
Filter size Stride

Batch

norm

Activation

function

Conv.1 64 5× 5 2 N L-ReLU

Conv.2 128 5× 5 1 Y L-ReLU

Table 4: Network Architecture of the Monitor.

Layers
Number

of filters
Filter size Stride

Batch

norm

Activation

function

Conv.1 64 5× 5 2 N L-ReLU

Conv.2 128 5× 5 1 Y L-ReLU

by linear transformation z = αzp + (1 − α)zq and decoder latent space GD(z).

Follow the Equation 1, we set α ∈ { 1
18 ,

2
18 , · · · ,

17
18}, where the angle set of zp

and zq is {(0◦, 18◦), (18◦, 36◦), · · · , (162◦, 180◦)}. So we can get a large number

of view angle GEIs that do not exist in the original dataset. DV-GEIs set is310

formed by combining the synthesized GEIs and original GEIs, which being fed

into CNN to extract invariant features.

4.4. Implementation Details of Feature Extraction

To extract view-invariant feature from view space covering DV-GEIs set. We

follow the idea of CNN architecture of Pan et al. [34] and multi-loss function315

of PoseGait [19] and use a simple CNN to extract feature. The network of

PoseGait [19] can effectively extract gait dynamic and static information from

the human pose sequence. The network architecture of the CASIA-B dataset

can be seen in Table 5, the number of convolutional layers of the OU-ISIR

dataset is four more than that of CASIA-B because the number of the subject320

of OU-ISIR is 4007 which is more than that of CASIA-B.

We follow the idea of multi-loss function by Wen et al. [33] which used the

softmax loss and center loss jointly to supervise the learning of deep convolu-

tional neural networks. The multi-loss function is shown in Equation 6. The

18



softmax loss can contribute to pulling apart different GEIs and it can enlarge

the inter-class dispersion. The center loss is useful to minimize the intra-class

variation and keep the features of different classes separable.

L = LS + γLc = −
m∑
i=1

log
eW

T
li
x̂i+bli∑n

j=1 e
WT
j x̂i+bj

+
γ

2

m∑
i=1

||x̂i − cli||22 (6)

Table 5: Network Architecture of the CNN.

Layers
Number

of filters
Filter size Stride

Activation

function

Conv.1 32 3× 3 1 P-ReLU

Conv.2 64 3× 3 1 P-ReLU

Pooling.1 N 2× 2 2 N

Conv.3 64 3× 3 1 P-ReLU

Conv.4 64 3× 3 1 P-ReLU

Eltwise.1 Sum operation between Pooling.1 and Conv.4

Conv.5 128 3× 3 1 P-ReLU

Pooling.2 N 2× 2 2 N

Conv.6 128 3× 3 1 P-ReLU

Conv.7 128 3× 3 1 P-ReLU

Eltwise.2 Sum operation between Pooling.2 and Conv.7

Conv.8 128 3× 3 1 P-ReLU

Conv.9 128 3× 3 1 P-ReLU

Eltwise.3 Sum operation between Eltwise.2 and Conv.9

Conv.10 128 3× 3 1 P-ReLU

FC.1 512 N N N

where m is the number of training batch size, the subscript i represents the

ith sample in m, x̂i ∈ Rd is the ith GEI feature that belongs to the lith class. d,

W ∈ Rd×n and b ∈ Rd denote the feature dimension, last connected layer and

bias term, respectively. cli ∈ Rd is the lith class center of gait features. We set325
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γ = 0.008 in the experiment.

4.5. Experimental Results on CASIA-B dataset

The gait recognition results on CASIA-B dataset are shown in Table 6,

7 and 8. The recognition rates of normal walking, carrying condition, and

clothing variations with different view angles are listed in the three tables. In330

our experiments, the first 4 normal walking sequences are put into the gallery set.

The probe set contains three different conditions, the rest 2 normal sequences,

2 walking sequences with a bag, and 2 walking sequences with a coat condition,

respectively. In these tables, each row represents a gallery view, and each column

represents a probing view, resulting in each table has 121 combinations. To make335

it easy to understand the rules of results, we bold the highest results for each

column in Table 6, 7 and 8. From these tables, we can see that the performance

will be higher when the view angle difference between gallery and probe is small.

The overall performance when probe set is on the normal sequences is better

than that of on walking with a bag and walking with a coat.340

Table 6: Recognition rates when the probe data is normal walking (NM) on CASIA-B dataset.

Probe set view (NM05, NM06)

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
a
ll
e
ry

se
t
v
ie
w

(N
M

0
1
-N

M
0
4
)

0◦ 100.0 93.55 81.45 56.45 47.58 40.32 41.13 51.61 60.48 77.42 93.55

18◦ 95.97 100.0 98.39 85.48 67.74 58.06 62.10 66.94 77.42 88.71 83.06

36◦ 79.03 100.0 97.58 95.97 84.68 70.16 79.84 87.10 89.52 83.87 67.74

54◦ 54.84 88.71 95.97 96.77 95.16 89.52 90.32 84.68 83.06 71.77 50.00

72◦ 37.90 69.35 90.32 97.58 99.19 99.19 98.39 93.55 87.90 65.32 35.48

90◦ 37.90 57.26 82.26 92.74 99.19 99.19 98.39 91.94 78.23 55.65 38.71

108◦ 35.48 56.45 79.03 89.52 99.19 100.0 99.19 96.77 92.74 70.97 40.32

126◦ 41.13 75.00 80.65 85.48 95.16 95.16 100.0 98.39 98.39 79.84 54.03

144◦ 63.71 79.03 84.68 80.65 73.39 74.19 90.32 97.58 99.19 96.77 76.61

162◦ 89.52 91.13 80.65 65.32 63.71 58.87 69.35 80.65 96.77 100.0 97.58

180◦ 95.16 83.06 72.58 48.39 44.35 40.32 44.35 52.42 75.81 94.35 100.0

4.6. Effectiveness of View Space Covering with Dense Sampling

In order to demonstrate that view space covering with dense sampling can

contribute to better view-invariant feature extraction, we compare with another
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Table 7: Recognition rates when the probe data is with a bag (BG) on CASIA-B dataset.

Probe set view (BG05, BG06)

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
a
ll
e
ry

se
t
v
ie
w

(N
M

0
1
-N

M
0
4
)

0◦ 93.55 81.45 63.71 51.61 37.90 26.61 37.10 43.55 53.23 67.74 82.26

18◦ 80.65 94.35 90.32 77.42 49.19 45.16 48.39 53.23 63.71 70.16 64.52

36◦ 58.87 87.90 92.74 87.90 70.97 52.42 62.10 71.77 62.90 58.87 55.65

54◦ 33.33 58.54 78.05 86.99 82.11 73.17 79.67 66.67 56.10 45.53 33.33

72◦ 26.61 44.35 63.71 81.45 88.71 83.06 79.84 69.35 58.87 37.10 25.81

90◦ 27.42 36.29 45.16 66.94 79.84 83.06 75.81 66.94 50.00 31.45 23.39

108◦ 25.81 35.48 46.77 67.74 75.00 79.84 79.03 72.58 62.90 37.10 19.35

126◦ 33.06 48.39 63.71 70.16 75.00 73.39 83.87 87.90 82.26 64.52 29.84

144◦ 46.77 58.06 61.29 62.90 58.87 54.84 75.00 85.48 87.10 84.68 54.03

162◦ 63.41 74.80 66.67 55.28 50.41 45.53 54.47 60.16 69.92 91.06 82.11

180◦ 79.03 70.97 62.90 41.13 33.87 33.06 37.90 43.55 58.06 78.23 91.94

Table 8: Recognition rates when the probe data is with a coat (CL) on CASIA-B dataset.

Probe set view (CL05, CL06)

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
a
ll
e
ry

se
t
v
ie
w

(N
M

0
1
-N

M
0
4
)

0◦ 58.06 49.19 37.10 25.81 20.97 16.94 20.97 22.58 27.42 41.94 39.52

18◦ 42.74 71.77 62.90 54.03 37.10 33.06 33.06 37.10 42.74 53.23 37.10

36◦ 32.26 61.29 66.94 55.65 51.61 40.32 39.52 45.16 41.94 37.90 28.23

54◦ 20.97 44.35 57.26 66.94 62.90 54.03 46.77 50.00 39.52 29.03 26.61

72◦ 16.13 33.87 51.61 55.65 66.94 66.13 64.52 54.84 41.94 28.23 22.58

90◦ 16.94 25.81 39.52 54.03 68.55 73.39 70.16 55.65 40.32 24.19 23.39

108◦ 11.29 28.23 37.10 46.77 62.10 67.74 70.97 60.48 45.97 23.39 16.94

126◦ 18.55 30.65 41.13 45.97 52.42 48.39 54.84 59.68 54.84 33.06 23.39

144◦ 22.58 33.87 41.13 45.97 42.74 40.32 45.16 58.06 59.68 47.58 36.29

162◦ 33.87 48.39 49.19 33.87 32.26 24.19 30.65 37.90 51.61 67.74 45.16

180◦ 43.55 37.90 39.52 25.00 17.74 11.29 19.35 23.39 33.87 47.58 59.68
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Figure 8: Effectiveness on View Space Covering. Training data of OG-GEIs model is em-

ploying original GEIs set with large interval between the two nearest views. Training data of

DV-GEIs model is employing the view covering DV-GEIs set. Each row represents a probe

angle. From left column to right column are NM, BG and CL condition respectively.
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experiment OG-GEIs result, as shown in Figure 8. OG-GEIs model is trained

by using original GEIs set with a larger interval between the two nearest views.345

while the DV-GEIs model is trained by using the proposed dense sampling

DV-GEIs set. Each row represents a probe angle, we only list 4 probe angles

(36◦, 72◦, 108◦ and 144◦) with a 36 interval because of limited space. The first

column shows the comparison in normal walking sequences, while the second

and third column shows the comparison on carrying condition and clothing350

condition respectively.

As illustrated in Figure 8, it is clear that the performance of DV-GEIs is

better than that of OG-GEIs at many points not only in normal walking (NM)

condition, but also in carrying condition (BG) and clothing condition (CL). This

shows that our view covering dense view sampling is an effective way to extract355

better view-invariant feature and enhance the robustness for gait recognition.

In addition, in order to further show the effectiveness of dense view space

covering, we evaluate the average accuracy of the generated DV-GEI set on

different degree intervals. The average accuracy is computed by the average

of all recognition rates excluding identical-view cases from Table 6, 7 and 8, as360

shown in Figure 9. The proposed approach of view space covering is to synthesize

samples that do not exist on the original dataset, and add generated samples

into the orignial dataset to extract better view-invariant feature. Specifically,

the interval of two nearest views on CASIA-B is 18◦, we synthesize 17 GEIs

and add them into the CASIA-B dataset. The angle set on CASIA-B is θ ∈365

{0◦,18◦,36◦,54◦,72◦,90◦,108◦,126◦,144◦,172◦,180◦}, the interval degrees are set

as {2, 1, 1/2, 1/6, 1/18} times of 18◦ in the experiment, that is 36◦, 18◦, 9◦, 3◦

and 1◦ interval. From 9, the gap of performance from 3◦ interval to 1◦ interval

is not obvious, but it can still a little bit with 1◦ interval in terms of normal

walking and carrying bag conditions. Generally, the finer the granularity of view370

angles, the better the recognition performance.
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Figure 9: The average accuracy for the probe data being NM, BG, and CL with different

degree intervals on CASIA-B dataset. NM: normal walking, BG: walking with a bag, CL:

walking with a coat.

4.7. Visualization of View Covering GEIs

To see the quality of view covering generated GEIs, we synthesize some view

samples, as shown in Figure 10. In our above experiment, we generate the GEIs

by using two adjacent GEIs with 18◦ interval between the two closest views in375

CASIA-B dataset. Therefore, we can get various GEIs with 1◦ interval. The

difference of GEIs between the adjacent angle (1◦) is difficult to be distinguished

in vision. Besides, it does not provide ground truth GEIs in the original dataset

to compare the synthesized GEIs. Therefore, in order to visualize the transfor-

mation obviously and have ground truth for comparison, we use two GEIs (0◦380

and 90◦) with large 90◦ interval to generate some sample GEIs. That is, in the

linear transformation z = αzp+(1−α)zq, we set linear ratio α ∈ { 1890 ,
36
90 ,

54
90 ,

72
90},

and the angle set of zp and zq is {(0◦, 90◦)}.

To better show the synthesized quality of DV-GAN, we compare our DV-

GEIs with another type of synthesized GEIs which direct view morphing by385

linear interpolation of two GEI images. That is, the second row GEIs are

generated by equation x̂ = αxp + (1 − α)xq, where α ∈ {1890 ,
36
90 ,

54
90 ,

72
90}. From
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Figure 10, we can see that synthesized GEIs by direct view morphing have

obvious ghost, while synthesized GEIs by DV-GANs is very similar to ground

truth although they are synthesized by two images with 90◦ interval. It will be390

more similar to the original GEI if using images with a smaller angle interval

to synthesize. The comparison shows that our DV-GAN can synthesize realistic

GEI with any angle condition, and our generated GEI can preserve human

identification and view information very well.

Ground Truth

Direct Morphing

DV-GAN

°18 36 54 72° ° °

Figure 10: Visualization of view covering synthesized GEIs. Second-row GEIs are synthesized

by linear interpolation of two GEI images. Third-row GEIs are synthesized by the proposed

DV-GAN. Two types of synthesized GEIs are generated by 0◦ and 90◦ two original GEIs.

4.8. Comparison with GEI template methods395

To further evaluate the proposed method, we compare proposed method with

recent GEI-based template methods. Including SPAE [11], GaitGAN [12], Gait-

GANv2 [13], GaitSet-GEI [22] and our previous work DV-GEIs-pre [4]. For the

reasonableness of comparison, these methods are all based on the GEI template,

and their experimental setting are also based on Table 1. In the Table 9, we can400

see the mean accuracy (76.4%) of proposed method is much better than that of

SPAE [11] (59.3%), GaitGAN [12] (57.2%) and GaitGANv2 [13] (63.1%) on the

25



Table 9: Comparison with GEI-based template approaches at average accuracy (%) on CASIA-

B dataset. Excluding identical-view cases. (GaitSet-GEI [22]: GEI is fed into the GaitSet.)

Training

Subjects

Gallery View NM:01-04 0◦-180◦

Probe View NM:05-06 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

62

SPAE [11] 50.0 58.1 61.0 63.3 64.0 62.1 62.3 66.3 64.4 54.5 46.7 59.3

GaitGAN [12] 41.9 53.5 63.0 64.5 63.1 58.1 61.7 65.7 62.7 54.1 40.6 57.2

GaitGANv2 [13] 48.1 61.9 68.7 71.7 66.7 64.8 66.0 70.2 71.6 58.9 46.1 63.1

DV-GEIs-pre [4] 64.5 76.2 81.3 80.8 77.1 72.6 74.4 78.9 80.6 75.6 63.7 75.1

DV-GEIs 63.1 79.4 84.6 79.8 77.0 72.6 77.4 80.3 84.0 78.5 63.7 76.4

74
GaitSet-GEI [22] - - - - - - - - - - - 80.4

DV-GEIs-pre [4] 71.0 86.4 91.4 89.6 80.4 80.1 82.5 90.1 90.4 85.3 70.5 83.4

DV-GEIs 72.9 85.9 89.3 87.1 83.7 81.7 82.8 87.3 91.3 87.1 74.9 84.0

62

Probe Angle BG:01-02 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

SPAE [11] 34.0 38.6 42.1 42.7 39.0 32.8 31.3 39.9 41.0 35.7 32.3 37.2

GaitGAN [12] 28.5 35.2 42.7 34.4 38.0 33.5 36.2 44.8 41.8 33.3 23.6 35.6

GaitGANv2 [13] 37.2 43.4 46.6 46.0 47.6 41.5 41.2 48.5 48.8 42.2 31.6 43.1

DV-GEIs 47.5 59.6 64.2 66.3 61.3 56.7 63.4 63.3 61.8 57.5 47.0 59.0

74
GaitSet-GEI [22] - - - - - - - - - - - 68.1

DV-GEIs 58.3 71.6 79.1 71.5 63.6 56.7 57.7 73.7 74.4 69.4 58.4 66.8

62

Probe Angle CL:01-02 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

SPAE [11] 21.5 25.4 27.3 28.1 26.9 22.2 22.3 26.3 24.8 21.5 19.6 24.2

GaitGAN [12] 9.8 15.2 24.8 25.0 24.7 19.9 22.7 24.5 27.7 18.0 11.9 20.4

GaitGANv2 [13] 20.7 23.1 26.6 30.8 28.2 23.0 24.4 27.4 24.2 21.9 16.0 24.2

DV-GEIs 30.2 43.3 43.4 43.1 43.6 41.9 40.0 40.3 41.4 38.7 29.9 39.6

74
GaitSet-GEI [22] - - - - - - - - - - - 40.8

DV-GEIs 36.4 51.5 51.1 49.1 44.9 46 47.7 46.2 44.2 41.2 32.6 44.6

normal walking condition (NM). In addition, we can see the proposed method

can also achieve a better performance on carrying a bag (BG) and wearing a

coat (CL) condition. These methods [11, 12, 13] aim to transform any GEI into405

the side GEI, while ours synthesized dense view samples aim to cover the whole

view space. The comparison shows that gait view space covering has a positive

impact on solving the cross-view challenge.

The method of GaitSet [22], GaitNet [24] and GaitPart [23] can achieve very

high performance when it uses the human walking image sequence as an input410

feature. But the performance of GaitSet [22] would be decreased dramatically

when using GEI as an input feature (drop from 95.0% to 80.4%). One reason

for this is that the human silhouette sequence has richer information than GEI.
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Here, we compare our method with GaitSet-GEI [22] which uses GEI as an

input feature and be fed into the GaitSet, not compare with those based on415

human walking image sequence methods. Because our method is based on the

GEI template, so it is fair to compare with those based on the GEI template

method. The comparison as shown in Table 9, the number of training subjects

is 74, and the rest of the subjects is for the testing. The comparison between

our method and GaitSet-GEI [22] shows that our performance is better than420

that of GaitSet-GEI [22] on the normal walking condition on clothing condition.

In addition, the comparison between DV-GEIs-pre [4] and DV-GEIs illustrates

that center loss in the monitor can improve the discriminative capability of

synthesized images and boost recognition rate.

4.9. Comparison with VTM methods425

To illustrate the contribution of space covering on the cross-view problem, we

also compare with view transformation model (VTM) methods when probe angle

at 54◦, 90◦ and 126◦ respectively, as shown in Figure 11. Compared methods

are FD-VTM [35], RSVD-VTM [8], RPCA-VTM [9], R-VTM [36], SPAE [11],

GaitGAN [12] and GaitGANv2 [13]. These methods all try to transform the430

gait features from one view to another, and our method is to synthesize more

samples to cover the entire view space.

From Figure 11, it is clear that the performance of the proposed DV-GEIs

method is better than other methods, especially when the view angle difference

between gallery and probe is large. The comparison shows that dense view space435

covering can handle larger viewpoint changes well. Besides, when the viewpoint

changes are not large enough, this method can also significantly improve the

recognition rate.

4.10. Experimental results on OU-ISIR dataset

We also do some experiments on OU-ISIR dataset [3]. The original view of440

OU-ISIR dataset [3] has 4 views, 55◦, 65◦, 75◦ and 85◦, respectively. Because

of the start angle from 55◦, and end with 85◦ on the OU-ISIR dataset. So
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Figure 11: Comparisons with view transformation model methods when probe view at (a)54◦,

(b)90◦ and (c)126◦ condition.
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we synthesize DV-GEIs data from 55◦ to 85◦ with 1◦ interval between the two

closest views. The result of experiments on the OU-ISIR dataset is shown in

Table 10. There are 16 recognition rates in this table, each row represents an445

angle of the gallery group, and each column represents an angle of the probe

group. the overall performance is the best when the probe angle is the same as

the galley angle.

Table 10: Cross-view recognition result on OU-ISIR dataset.

Probe angle
Gallery angle

55◦ 65◦ 75◦ 85◦

55◦ 97.0 95.2 94.0 90.1

65◦ 95.7 96.7 95.0 94.3

75◦ 92.2 96.0 97.5 95.3

85◦ 91.6 95.8 97.0 97.8

We compare our recognition rate with OG-GEIs, DeepCNN [21], GaitGANv2[13]

and DV-GEIs-pre [4], as shown in Table 10. From this table, we can see that450

the performance of DV-GEI is better than the benchmark reported by the au-

thor of the dataset [21, 13] when the probe angle is 55◦ and 75◦. It should be

noticed that DeepCNN [21] is operating on the sequence of human silhouettes

instead of GEI, which contains richer information. But our performance can

still achieve high performance. In addition, our new result is also better than455

our previous work DV-GEIs-pre [4] when probe angle is 55◦, 75◦ and 85◦, which

shows again that center loss in the monitor further improve the quality of syn-

thesized images and recognition rate. In addition, the accuracy of view covering

DV-GEIs is better than that of OG-GEIs (trained by original GEIs set), which

shows again that gait view space covering has a positive impact on solving the460

cross-view problem.
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Table 11: Comparison with other approaches with average accuracy (%) on OU-ISIR dataset.

Excluding identical view cases. Training data of OG-GEIs model is employing original GEIs

set. Training data of DV-GEIs model is employing the view covering DV-GEIs set.

Methods
Probe angle

55◦ 65◦ 75◦ 85◦

DeepCNN [21] 91.6 92.3 92.4 94.8

GaitGANv2 [13] 91.9 95.0 94.4 94.6

OG-GEIs 92.0 93.8 94.0 93.8

DV-GEIs-pre [4] 92.6 95.1 94.4 94.6

DV-GEIs 93.1 95.0 94.5 94.8

5. Conclusions and Future Work

In this paper, view space covering with dense sampling is introduced to

improve the gait recognition performance. We synthesize GEI samples with

various views, ranging from 0◦ to 180◦ with 1◦ interval to fill the GEI view space.465

DV-GEIs is synthesized by the proposed DV-GAN network. It consists of three

parts, generator, discriminator, and monitor. The new monitor not only can

maintain human identification and view information very well but also improves

the discriminative capability of synthesized images. The experimental results

show that dense view space covering can lighten the burden of view-invariant470

extraction for CNN and make the feature more discriminative compared with

the original datasets.

With the development of synthesized sample technology, the generated im-

ages will be more and more realistic. We believe the idea of view covering syn-

thesized samples by DV-GAN not only can enhance robustness to view variation475

but also deal with other variations, such as synthesizing different types of bags

and different types of clothes. Such generalization has the potential to make

a great contribution to gait research with the simulation of real environments.

Eventually, the generalization may help to further improve the development of

gait recognition technology and enhance practical applications.480
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In the future we will explore subspace indexing on Grassmann manifold [37]

framework to have an even lighter and faster inference time engine for gait

recognition, with DV-GAN as a samples generator.
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