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We propose in this paper a novel model-based gait recognition method, PoseGait . Gait recognition 

is a challenging and attractive task in biometrics. Early approaches to gait recognition were mainly 

appearance-based. The appearance-based features are usually extracted from human body silhouettes, 

which are easy to compute and have shown to be efficient for recognition tasks. Nevertheless silhouettes 

shape is not invariant to changes in clothing, and can be subject to drastic variations, due to illumination 

changes or other external factors. An alternative to silhouette-based features are model-based features. 

However, they are very challenging to acquire especially for low image resolution. In contrast to previ- 

ous approaches, our model PoseGait exploits human 3D pose estimated from images by Convolutional 

Neural Network as the input feature for gait recognition. The 3D pose, defined by the 3D coordinates of 

joints of the human body, is invariant to view changes and other external factors of variation. We design 

spatio-temporal features from the 3D pose to improve the recognition rate. Our method is evaluated on 

two large datasets, CASIA B and CASIA E. The experimental results show that the proposed method can 

achieve state-of-the-art performance and is robust to view and clothing variations. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The gait characterizes is the walking style of a person. It can be

sed as a biometric feature to identify a person. Compared with

ther biometric features such as fingerprint, face, iris and palm-

rint, gait has its unique advantages such as non-contact during

cquisition, hard to fake and particularly suitable for long-distance

uman identification. Gait recognition algorithms have become

ore and more robust during the past decades, and can nowadays

e used in various ‘real world’ applications such as video surveil-

ance, crime prevention and forensic identification. 

Gait is a behavioral biometric; it is not as robust as physical

iometric features as fingerprint, iris and face. When there are

ome variations, such as view, carrying, clothing, illumination, the

ait feature may change drastically. In order to improve the stabil-

ty of the extracted features, some earlier work tried to model a

uman body and to capture difference of motion patterns among

ifferent subjects [1–3] . The ideas of using the body part motion
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re straightforward and reasonable. But it is very challenging to

ocate and track each body part accurately. 

In the pass two decades, the appearance-based gait recognition

ethods [4,5] are more popular than the model-based ones. The

ppearance-based methods usually use the human silhouettes as

aw input data. These methods can achieve very high recognition

ates when there are not obvious variations. However, the varia-

ions in real applications can change human shape greatly and de-

rease performance severely. In contrast, model-based features are

ased on human body structure and movements. So they are not

o sensitive to human shape and human appearance relatively. Re-

ently the progress in human body pose estimation [6] is bring

ore hope to the model-based methods. Model-based features are

ormally extracted from human body structures and local move-

ent patterns, so they can handle many variations, especially view

ariations. 

We propose in this paper a novel model-based gait recogni-

ion method, PoseGait , which exploits human pose as feature. We

emonstrate experimentally that the pose feature, defined in a low

imensional space, can achieve recognition rates in par with the

https://doi.org/10.1016/j.patcog.2019.107069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107069&domain=pdf
mailto:yusq@sustech.edu.cn
https://doi.org/10.1016/j.patcog.2019.107069
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appearance-based features, while being invariant to external fac-

tors changes. The contributions of our work are as follows: 

• We propose a novel model-based gait recognition method,

PoseGait , which exploits human pose as feature. The method

can achieve high recognition rate despite the low dimensional

feature (only 14 body joints). 
• We design dedicated features based on 3D pose information.

We demonstrate experimentally the advantage of these fea-

tures. 
• CNN nor RNN/LSTM can successfully extract spatio-temporal

gait feature with the help of fusing two losses. 

The rest part of the paper is organized as follows. In the next

section, we introduce the related work. Section 3 describes the

proposed method. Experiments and evaluation are presented in

Section 4 . The last section gives the conclusions and future work. 

2. Related work 

In this section, we will briefly review existing gait recogni-

tion methods. Two categories of methods, appearance-based and

model-based ones, are presented. We also introduce pose estima-

tion methods that extract human body parameters. 

2.1. Appearance-based methods 

Appearance-based methods usually use the human silhouettes

as raw input data. Gait energy image (GEI) [4] is one of the

most popular feature which has a low computational cost and can

achieve a relative high recognition rate. One common pipeline of

GEI-based methods are: 1) Extract the human silhouettes from

videos; 2) compute a gait energy image GEI through aligning the

silhouettes and averaging them; 3) and then compute the similari-

ties between each of two GEIs. GEI+PCA [4] is one simple approach

of GEI-based methods, it can achieve good accuracy when there are

no obvious variations. But it is hard to handle view angles, clothing

and other variations. 

In order to increase the robustness of GEI, some researchers

have focused on reducing the disturbance of the shape changes

and occlusion. For instance, Huang et al. [7] increase robustness

to some classes of structural variations by fusing shifted energy

image and the gait structural profile. For tackling with view condi-

tion variations, Yu et al. [8] employ the Stacked Progressive Auto-

Encoders (SPAE) trying to transform gait images from arbitrary an-

gles to a specific view. These methods can handle with view, cloth-

ing and carrying conditions to a certain extent. But the perfor-

mance of these methods is still not good enough, since GEI will

lead to some temporal information missing. 

Recently, some researchers directly use human silhouettes as

input data instead of using the average of them. The method

in [9] is the first one using a deep CNN model to extract fea-

ture from human silhouette sequence, and its performance out-

performs the previous state-of-the-art approaches by a outstand-

ing gap. In addition, Chao et al. [10] regard gait as a set consist-

ing of independent silhouettes rather than a continuous silhou-

ettes (Wu et al. [9] ). They propose a new network named GaitSet

to extract invariant feature from that set. In [11] Zhang et al. also

demostrated experimentally that temporal feature between frame

can achieve better performance than GEI. A similar conclution can

also be found in [5] . These methods can achieve high accuracy in

terms of cross-view condition. But it is still challenging to handle

with cross-carrying and cross-clothing conditions very well. The

main reason is that human appearance and shape can be changed

greatly when there are some variations. 
.2. Model-based methods 

The model-based methods extract features by modeling hu-

an body structure and local movement patterns of different body

arts. Compared with appearance-based methods, model-based

ethods can be robust to many variations if human bodies are cor-

ectly and high accurately modeled. But it is not a easy task. Some

arlier model-based methods [2] even mark different body parts

anually, or use some specific devices to obtain the human joint

ositions. In addition, body modeling from images normally has a

eavy computational cost. For these reasons, model-based methods

re not as popular as appearance-based one. 

In some early work such as in [1] by Nixon et al. it is shown

hat human body motion has the capacity to identify different

ypes of gait. They use a simple stick model to simulate legs, and

hen use an articulate pendulum movement to simulate the leg

ovement during walking. Finally, frequency components are ex-

racted as gait features for human identification. In addition, Wang

t al. [3] argue that the changes of the angle of each joint in tem-

oral domain can be beneficial to recognition. They proposed a

ulti-connected rigid body model, and the body is divided into

4 parts and each part connected through a joint. To extract the

emporal feature from body joints, Feng et al. use the human

ody joint heatmap extracted from a RGB image instead of us-

ng a binary silhouette to describe the human body pose [12] . The

eatmaps are sent into a Long Short Term Memory (LSTM) recur-

ent neural network to extract temporal feature. 

In recent years, some researchers use human body skeleton and

ody joints to recognize different persons. For example, Kastanio-

is et al. [13] use skeleton data from the low-cost Kinect sensor in-

tead of a specific equipment in [2] . It shows that the body joints

rom Kinect contains enough information for human identification.

ut in video surveillance, the commonly used cameras are mostly

GB ones, not Kinect sensors. From the previous work we can con-

lude that the accuracy of the human body model is crucial for gait

ecognition. 

.3. Pose estimation methods 

Human body pose estimation has achieved great progress in

ecent years. One of the earlier works can be found in [14] . The

ethod can recover 3D human poses from silhouettes by adopting

ultiview locality-sensitive sparse coding in the retrieving process.

hese last years, most recent work are deep learning based meth-

ds [15,16] . In [17] Hong et al. learnt a non-linear mapping from 2D

mages to 3D poses using a deep autoencoder network. Recently, a

ottom-up pose estimation method [6] using deep CNN can create

ccurate human models. The method can handle multiple persons

n an image. It can predict vector fields, named Part Affinity Fields

PAFs), that directly estimate the association between anatomical

arts in an image. They have designed an architecture to jointly

earn part locations and its association. Their method has achieved

he state-of-the-art performance on the MSCOCO 2016 key points

hallenge and the MPII Multi-Person benchmark. The system in [6] ,

penPose, can jointly detect human body joints including hands,

eet, elbows, etc. 

The 2D poses extracted from images are not invariant to view-

oints, but the 3D ones are. To estimate a 3D pose from one image

s an ill-posed problem. But with constrains of the human body,

hen et al. [18] proposed a 3D human pose estimation method

rom one single RGB image. The idea is simple, but it outperforms

any state-of-the-art 3D pose estimation system. It also does not

eed multiple cameras and is suitable to video surveillance appli-

ations. 
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Fig. 1. The framework of the proposed method. The 3D pose are estimated from the 2D one. The 3D pose f pose and three kinds of additional spatio-temporal features ( f angle , 

f limb and f motion ) are concatenated as the input of CNN. 
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Fig. 2. 2D poses from three different subjects. Step lengths and leg styles at some 

instance are different among the three different subjects. 

Fig. 3. The estimated 3D poses (right ones) from RGB images (left ones). 
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In summary, we think that there will be increasing model-

ased gait recognition method in future with the progress of hu-

an body modeling. 

. The proposed method PoseGait 

In our proposed method, PoseGait , 3D human body joints are

aken as feature for gait recognition. We use 3D pose informa-

ion because it is robust to view variation. Compared with some

ppearance-based features, such as GEI [4] , the feature used in the

roposed method is low dimensional and far more compact be-

ause there are only some joint positions and not high dimensional

mages. In order to extract the temporal feature, we employ the

oses extracted from a sequence of frames. According to pioneer

ork in [3] , the motion patterns and angles are important for hu-

an identification. In this work, we design some handcrafted fea-

ures based on human prior knowledge to improve the efficiency of

eature extraction. Four kinds of features are concatenated together

s described in Section 3.3 . It can be regarded as that the features

re fused at the input level, nor at the learning or output level as

n [19,20] . During the training phase, two losses are combined to

educe the intra-class variation and improve the inter-class varia-

ion. The framework of the whole method is shown in Fig. 1 . The

mplementation details are described in the following part of this

ection. 

.1. Human body pose features 

.1.1. 2D pose feature 

To reduce the effect of carrying and clothing variation on gait

ecognition, we introduce a pose feature for gait recognition. In

ome early works [2,3] , it is shown that joint motion has sufficient

apacity to identify different subjects. But automatic accurate pose

stimation was challenging in the years before deep learning. In

he proposed method the joints are estimated using OpenPose [6] .

he estimated pose consists of 18 body joints: Nose, Neck, RShoul-

er (right shoulder, the following names are in the similar man-

er), RElbow, RWrist, LShoulder, LElbow, LWrist, RHip, RKnee, RAn-

le, LHip, LKnee, LAnkle, Reye, LEye, REar and LEar. 

In images the size of a human body is changing according to

he distance between the subject and the camera. The human bod-

es of different subjects all are normalized to a fixed size. The dis-

ance between the neck and the hip is regarded as the unit length.

he position of the hip is at the center of RHip and LHip. The neck

s placed at the origin of the plane coordinate system. So the body

oints are normalized as follows: 

 

′ 
i = 

J i − J neck 

H nh 

(1) 

here J i ∈ R 

2 is the position of body joint i , J ′ 
i 

is the normalized

osition of J i , J neck is the neck position, the H nh is the distance be-

ween the neck and the hip. The normalized poses from three dif-
erent subjects are shown in Fig. 2 . From the figure we can find

tep lengths and leg styles at some instance are different among

he three different subjects. 

.1.2. 3D pose feature 

The pose extracted from images is 2D. When the view is

hanged, the 2D pose will also be changed drastically. So it is not

obust to the view variation. The solution is to estimate the 3D

ose from the 2D pose [18] . The unique advantage of [18] is that it

an estimate 3D pose from one single image, specifically from the

D pose by human body constrains. It makes the method feasible

n real applications. 

In [18] , the input data should be the positions of 14 joints. The

D joints are Head, Neck, RShoulder, RElbow, RWrist, LShoulder,

Elbow, LWrist, RHip, RKnee, Rankle, LHip, LKnee and LAnkle. But

here are 18 joints can be estimated using OpenPose method [6] .

o we averaged the position of Nose, Reye, LEye, Rear and Lear as

he position of Head. The 3D pose feature f pose of frame c is defined

s: 

f pose = { J 0 , J 1 , . . . , J N } (2)

here J i = { x i , y i , z i } , i ∈ { 0 , 1 , 2 , . . . , N } and N = 13 . 

In order to reduce the effect of view variation, we set the x

irection to the subject’s frontal direction, and the y direction to

he side of the body defined by the left shoulder and the right one,

nd the z is the vertical one to the ground. The 3D pose is rotated

nd normalized in this 3D space as shown in Fig. 3 . 
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Fig. 4. The angle information α, β between left shoulder joint J 5 and left elbow 

joint J 6 . The local movement pattern would be captured through the change of α

and β during walking process. The human joints should be confined human 3D 

skeleton model according to the human prior knowledge. Thus there are 13 pairs of 

angle motion on each frame pose. 
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3.2. Designing spatio-temporal features 

It should be helpful to design some handcrafted features based

on 3D pose (ie., joints position in a 3D Euclidean space), such as

joint angles, motions for gait recognition. The features based on

prior knowledge will ease the task of the deep neural network.

There is a similar approach in [21] , coined EigenJoints , for human

action recognition: it can combine the features of static pose, mo-

tion and offset to improve action recognition. Inspired by Eigen-

Joints , we design three kinds of additional spatio-temporal pose

features: 1) joint angle, the angle changing at some joints; 2) limb

length, the human body static measures; 3) joint motion, the dy-

namic feature to describe the motion patterns. 

3.2.1. Joint angle 

In [3] Wang et al. proposed a model-based method to employ

joint angle and joint trajectories of lower limbs to capture the dy-

namic feature of gait. The authors demonstrate experimentally that

the joint angle changing in lower limbs can benefit gait recog-

nition. Compared with the method in [3] , the joint positions are

more accurate in the proposed method. Besides, the joint positions

are in a 3D space not a 2D one, and not only the lower limbs but

all the joints can be captured for the model-based feature extrac-

tion. 

The angle feature f angle of frame c is defined in the following

equations. As described in Fig. 4 , two angles α and β are defined.

f angle = { (αi j , βi j ) | (i, j) ∈ �} (3)

αi j = 

{
arctan 

y i −y j 
x i −x j 

, x i � = x j 
π
2 

, x i = x j 
(4)

βi j = 

{
arctan 

z i −z j √ 

(x i −x j ) 2 +(y i −y j ) 2 
, (x i − x j ) 

2 + (y i − y j ) 
2 � = 0 

π
2 

, (x i − x j ) 
2 + (y i − y j ) 

2 = 0 

(5)

where J i = (x i , y i , z i ) , J j = (x j , y j , z j ) . The ( i, j ) is in the set of �,

and � = { (1,0), (1,2), (2,3), (3,4), (1,5), (5,6), (6,7), (1,8), (8,9), (9,10),

(1,11), (11,12), (12, 13)}. The angles are defined between two adja-

cent joints. The selection of the two adjacent joints is constrained

by the human 3D skeleton model. The angles α and β are defined
etween left shoulder joint J 5 and left elbow joint J 6 as shown in

ig. 4 . 

.2.2. Limb length 

The limb lengths are the distances between two adjacent joints.

he limb lengths can be regarded as a model-based spatial feature.

he work in [2,3] demonstrates that this feature is feasible for gait

ecognition. So we involve the spatial feature into PoseGait method.

he feature is also robust to view, carrying condition and clothing

ariations. The definition of the limb length of frame c is: 

f limb = ‖ J i − J j ‖ 2 (6)

here ( i, j ) ∈ � and � is the same with that defined previously.

here are 13 static limb lengths for each human skeleton. 

.2.3. Joint motion 

The walking style can be described by the motion of joints. It

s reasonable and straightforward to use joint motions as the fea-

ure for gait recognition. In [22] Chen et al. proposed a kind of

eature FDEI which uses the difference between frames to capture

he dynamic information for gait recognition. FDEI is the difference

etween human body silhouettes, and here we use the difference

etween body joints. The joint motion is defined by the difference

etween two adjacent frames, frame c and frame c + 1 is as fol-

ows. 

f motion = P c+1 − P c (7)

here P = { J 0 , J 1 , . . . , J N } , J i = { x i , y i , z i } , and i ∈ { 0 , 1 , 2 , . . . , N } , N =
3 . 

.3. Fusion of features 

For each frame, we can get the 4 kinds of features as described

reviously, f pose , f angle , f limb and f motion . The four vectors can be con-

atenated to a long vector to present the pose, motion and static

ody measures. The feature vector from different frames can be

ut together to form a feature matrix as show in Fig. 5 . Because

 motion is computed from two frames, the number of f motion vectors

s less one than other kinds of features. We put a zero vector to

ake the matrix complete. The number of frames is fixed. The size

f the feature matrix has a fixed size. It can be taken as the input

f a CNN model. 

.4. The network design 

Since the feature is extracted frame by frame and is sequence

ata, it is reasonable to employ a method for sequential data such

s RNN [23] and LSTM [24] . In our previous works [25,26] we pro-

osed one method named as PTSN which can combine CNN and

STM for gait recognition. But some researchers [27,28] argued that

NN is better than RNN on recognition tasks. Compared with CNN,

NN is computationally expensive and sometimes difficult to train.

n addition, Zhang et al. [29] showed that CNN has enough capa-

ility to model temporal data. So we choose CNN nor LSTM for the

roposed method. 

For feature extraction in gait recognition, it is crucial to reduce

he intra-class variation and enlarge the inter-class one. As sug-

ested in [30,31] , a multi-loss strategy is employed to optimize

he network. There are two losses, the Softmax loss ( Eq. (8) ) and

he center loss ( Eq. (9) ). The softmax loss can classify the input

nto different classes. That means the softmax loss can enlarge the

nter-class variation. The center loss can keep the features of differ-

nt classes separable by minimizing the intra-class variation. The

wo losses are combined as defined in Eq. (10) . 

 sof tmax = −
m ∑ 

i =1 

log 
e 

W 

T 
y i 

x i + b y i ∑ n 
j=1 e 

W 

T 
j 

x i + b j 
(8)
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Fig. 5. The four kinds of features from a sequence are concatenated to form a feature matrix. 
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Fig. 6. Normal walking sequences at 11 views from CASIA B dataset. 

Table 1 

Experimental setting on CASIA B dataset. 

Training Test 

Gallery set Probe set 

ID: 001–062 ID: 063–124 ID: 063–124 

Seqs: NM01-NM06 Seqs: NM01-NM04 Seqs: NM05-NM06 

BG01-BG02, CL01-CL02 BG01-BG02, CL01-CL02 
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 center = 

1 

2 

m ∑ 

i =1 

|| x i − c y i || 2 2 (9)

 = L sof tmax + λ · L center (10)

here x i ∈ R 

d is the i th feature that belongs to the y i th class, d ,

 ∈ R 

d×n and b ∈ R 

d denote the feature dimension, last connected

ayer and bias term, respectively, and c y i ∈ R 

d is the y i th class cen-

er of deep features. In our experiments λ was set to 0.008. It is

he best value in our experiments. 

. Experimental results and analysis 

.1. Datasets 

To evaluate the proposed gait recognition method, RGB color

ideo frames are needed because the human poses should be es-

imated from color images and cannot from silhouettes. We chose

ASIA B Gait Dataset [32] since it contains the original color video

rames. The OU-ISIR research group in Osaka University also pro-

ided several large gait datasets [33] . But the large datasets from

U-ISIR cannot provide the original frames because of the privacy

ssue. We chose CASIA E Dataset as a second large dataset. 

CASIA B dataset is one of the popular public gait datasets

idely used in research community. It was created at the Institute

f Automation, Chinese Academy of Sciences (CASIA). It contains

24 subjects in total (31 females and 93 males). There are 10 se-

uences for each subject, 6 sequences of normal walking (NM), 2

equences of walking with bag (BG) and 2 sequences of walking

ith coat (CL). There are 11 views which were captured from 11

ameras at the same time, the view angles are {0 ◦, 18 ◦, ���, 180 ◦}.

ig. 6 illustrates the samples at 11 views from a subject of normal

alking. 

CASIA E is a newly created gait dataset by the Institute of Au-

omation, Chinese Academy of Sciences and the Watrix company.

he dataset contains 1014 subjects and is much larger than CASIA

. Different from other gait datasets with more than one thousand

ubjects, the gait data was collected from at 13 different views.

he views is from 0 ◦ to 180 ◦ with a 15 ◦ interval between two ad-

ent views in the horizontal direction. There are 6 sequences for

ach subject. They are 2 sequences for normal walking (NM), 2 for

alking with a bag (BG) and 2 for walking in a coat (CL). We are

orking on the privacy issue and will release the dataset later. 
.2. Experimental settings 

The first set of experiments is carried on CASIA B dataset. We

ut the first 62 subjects into the training set and the rest of sub-

ects into the test set as the experimental setting of SPAE [8] and

aitGAN [34] . In the test set, the gallery set consists of the first

 normal walking sequences of each subjects, and the probe set

onsists of the rest of sequences, as shown in Table 1 . 

For the experiments on CASIA E dataset, the experimental set-

ing is similar with that on CASIA B. The first 507 subjects of CASIA

 dataset are put into the training set, and the other 507 subjects

re put into the test set. In the test set, there are two types of

ettings. For the normal walking with the identical view condition,

e put the first normal walking sequence into the gallery and the

econd normal walking sequence into the probe set because each

ubject has only two normal walking sequences at the same view.

n the second setting, the first 2 normal walking sequences are put

nto the gallery and the others into probe set. The experimental

etting is shown in Table 2 . 
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Table 2 

Experimental setting on CASIA E dataset. 

Training Test 

Gallery set Probe set 

ID: 001–0507 ID: 508–1014 ID: 508–1014 

Seqs: NM01-NM02 Seqs: NM01-NM02 Seqs: NM01-NM02 

BG01-BG02, CL01-CL02 BG01-BG02, CL01-CL02 

∗ Note: In the test set, for the normal walking with the identical view condi- 

tion, gallery set contains NM01 and probe set contains NM02. 

Table 3 

Implementation of the CNN on CASIA B dataset. 

Layers Number of filters Filter size Stride Activation function 

Conv.1 32 3 × 3 1 P-ReLU 

Conv.2 64 3 × 3 1 P-ReLU 

Pooling.1 – 2 × 2 2 –

Conv.3 64 3 × 3 1 P-ReLU 

Conv.4 64 3 × 3 1 P-ReLU 

Eltwise.1 Sum operation between Pooling.1 and Conv.4 

Conv.5 128 3 × 3 1 P-ReLU 

Pooling.2 – 2 × 2 2 –

Conv.6 128 3 × 3 1 P-ReLU 

Conv.7 128 3 × 3 1 P-ReLU 

Eltwise.2 Sum operation between Pooling.2 and Conv.7 

FC.1 512 – – –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Implementation of the CNN on CASIA E dataset. 

Layers Number of filters Filter size Stride Activation function 

Conv.1 32 3 × 3 1 P-ReLU 

Conv.2 64 3 × 3 1 P-ReLU 

Pooling.1 – 2 × 2 2 –

Conv.3 64 3 × 3 1 P-ReLU 

Conv.4 64 3 × 3 1 P-ReLU 

Eltwise.1 Sum operation between Pooling.1 and Conv.4 

Conv.5 128 3 × 3 1 P-ReLU 

Pooling.2 – 2 × 2 2 –

Conv.6 128 3 × 3 1 P-ReLU 

Conv.7 128 3 × 3 1 P-ReLU 

Eltwise.2 Sum operation between Pooling.2 and Conv.7 

Conv.8 128 3 × 3 1 P-ReLU 

Conv.9 128 3 × 3 1 P-ReLU 

Eltwise.3 Sum operation between Eltwise.2 and Conv.9 

Conv.10 256 3 × 3 1 P-ReLU 

Pooling.3 – 2 × 2 2 –

Conv.11 256 3 × 3 1 P-ReLU 

Conv.12 256 3 × 3 1 P-ReLU 

Eltwise.4 Sum operation between Pooling.3 and Conv.12 

Conv.13 256 3 × 3 1 P-ReLU 

Conv.14 256 3 × 3 1 P-ReLU 

Eltwise.5 Sum operation between Eltwise.4 and Conv.14 

Conv.15 256 3 × 3 1 P-ReLU 

Conv.16 256 3 × 3 1 P-ReLU 

Eltwise.6 Sum operation between Eltwise.5 and Conv.16 

Conv.17 256 3 × 3 1 P-ReLU 

Conv.18 256 3 × 3 1 P-ReLU 

Eltwise.7 Sum operation between Eltwise.6 and Conv.18 

Conv.19 256 3 × 3 1 P-ReLU 

Conv.20 256 3 × 3 1 P-ReLU 

Eltwise.8 Sum operation between Eltwise.7 and Conv.20 

FC.1 512 – – –
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In order to make the readers follow the method easily, we

also listed the CNN implementation details on CASIA B dataset in

Table 3 . It is a light weighted network with 7 convolutional lay-

ers. For the experiments on CASIA E there is about 10 times data

for training. We found that a deeper network can achieve better

results. The implementation of the deeper network is shown in

Table 4 . We also tried to use the deeper network for CASIA E to

train a model for CASIA B. But the model is tend to be overfitted

because the data is not enough for the deeper network. 

4.3. Experimental results on CASIA B dataset 

The complete experimental results on CASIA B dataset are listed

in Tables 5 –7 . The evaluation of view, carrying condition and cloth-

ing variations are shown in the three tables. In experiments, the

first 4 normal walking sequences at a specific view are put into

the gallery set, and the last 2 normal sequences, 2 walking with a

bag sequences and 2 walking with a coat sequences are put into

the probe set of the three sets of experiment respectively. For each

set of experiments, there are 121 combinations. That means there

are 121 recognition rates in each table. 

4.4. Effectiveness of the handcrafted features by prior knowledge 

To light the burden of feature extraction for CNN and make the

feature more discriminative, handcrafted features by human prior

knowledge are involved in the proposed method. To prove the ef-

fectiveness of the handcrafted features, we designed 5 sets of ex-

periments. For the first set of experiments, only the 3D pose fea-

ture f pose was used. For the second to the fouth ones, the feature

f angle , f limb and f motion were evaluated respectively. In the fifth one,

four kinds of features were evaluated by concatenating them to be

a feature vector [ f pose , f angle , f limb , f motion ]. The handcrafted features

by prior knowledge include joint angles, limb lengths and joint

motions. 

There are also 121 combinations in each group of experiments.

To show the results clearly, we just show the average of the 121

recognition rates in Table 8 . From the results it can be found
ome interesting conclusions. Firstly, if there is not any variation,

ose feature f pose can achieve a best recognition rate 60.92%. The

ose feature is also the best one among these kinds of features.

econdly the motion feature f motion achieves a recognition rate of

0.38% where there is clothing variation, and it is the best among

he four individual features. That means motion is robust to the

lothing variation. At last the performance can be improved obvi-

usly by combining all these features. It also means that the hand-

rafted features can improve the recognition rate obviously. 

.5. Comparisons with appearance-based methods 

As stated in the previous part of the paper, the model-based

eature used in the proposed method is compact and has less re-

undant information as some appearance-based features. It means

he feature extraction is more challenging. To show effectiveness

f the model-based features, we make comparisons with some

ppearance-based methods. There are two groups of comparisons

ccording to different experimental settings. 

The first group of comparisons is made between the proposed

ethod and four state-of-the-arts which have the same experi-

ental settings in Section 4.2 , namely GEI+PCA [4] , SPAE [8] , Gait-

ANv1 [34] and GaitGANv2 [35] . The average recognition rates for

he probe data being NM, BG and CL with the view variation are

hown in Fig. 7 . 

From Fig. 7 , it can be found that the proposed method achieves

uch higher recognition rates than those of GEI+PCA, SPAE and
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Table 5 

Recognition rates when the probe data is normal walking on CASIA B dataset. 

Probe angle (normal #4-5) 

0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦

Gallery angle 

(normal #1-4) 

0 ◦ 95.97 88.71 61.29 45.97 27.42 26.61 27.42 30.65 47.58 65.32 63.71 

18 ◦ 89.52 96.77 95.16 83.06 54.84 35.48 41.13 37.10 60.48 65.32 64.52 

36 ◦ 69.35 95.16 95.97 93.55 76.61 66.13 59.68 51.61 58.87 50.00 45.16 

54 ◦ 38.71 81.45 95.16 96.77 91.94 83.06 75.00 59.68 54.03 44.35 38.71 

72 ◦ 32.26 54.03 75.81 88.71 95.97 96.77 79.84 70.97 59.68 37.10 24.19 

90 ◦ 27.42 39.52 66.94 81.45 91.13 97.58 90.32 70.97 66.13 41.13 22.58 

108 ◦ 27.42 37.90 62.90 71.77 83.06 89.52 97.58 91.13 81.45 59.68 31.45 

126 ◦ 38.71 44.35 53.23 66.13 70.16 75.81 92.74 94.35 91.94 79.84 43.55 

144 ◦ 42.74 50.81 58.87 62.90 53.23 64.52 83.87 94.35 96.77 87.90 60.48 

162 ◦ 62.10 60.48 51.61 41.94 37.10 31.45 53.23 71.77 89.52 97.58 80.65 

180 ◦ 68.55 63.71 49.19 31.45 22.58 20.16 21.77 35.48 62.90 89.52 97.58 

Table 6 

Recognition rates when the probe data is with carrying variation on CASIA B dataset. 

Probe angle (walking with a bag #1-2) 

0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦

0 ◦ 74.19 56.45 41.13 27.42 16.13 14.52 16.94 20.97 25.00 37.90 34.68 

18 ◦ 56.45 75.81 72.58 58.06 34.68 29.03 19.35 28.23 32.26 33.87 33.87 

36 ◦ 41.94 70.97 77.42 74.19 56.45 42.74 40.32 37.90 35.48 35.48 29.03 

54 ◦ 30.65 60.48 73.39 76.61 65.32 56.45 49.19 42.74 37.10 30.65 21.77 

72 ◦ 22.58 42.74 54.84 65.32 69.35 62.90 52.42 45.16 38.71 23.39 18.55 

90 ◦ 20.97 28.23 51.61 59.68 66.94 70.16 58.06 54.84 44.35 22.58 14.52 

108 ◦ 19.35 26.61 41.94 43.55 59.68 66.13 70.97 65.32 57.26 31.45 16.13 

126 ◦ 21.77 28.23 33.87 42.74 45.97 50.81 65.32 69.35 65.32 43.55 24.19 

144 ◦ 33.06 30.65 33.06 35.48 37.10 48.39 50.00 60.48 74.19 61.29 33.06 

162 ◦ 36.29 41.94 29.03 23.39 22.58 28.23 29.03 32.26 58.87 65.32 50.00 

180 ◦ 42.74 35.48 21.77 16.13 14.52 15.32 16.13 21.77 30.65 52.42 60.48 

Table 7 

Recognition rates when the probe data is with clothing variation on CASIA B dataset. 

Probe angle (walking with a coat #1-2) 

0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦

Gallery angle 

(normal #1-4) 

0 ◦ 46.77 33.87 21.77 13.71 14.52 15.32 12.90 23.39 25.00 28.23 24.19 

18 ◦ 33.87 48.39 52.42 32.26 26.61 16.94 20.97 21.77 29.84 25.00 22.58 

36 ◦ 26.61 42.74 57.26 50.81 45.97 31.45 32.26 35.48 31.45 28.23 21.77 

54 ◦ 17.74 23.39 56.45 61.29 51.61 47.58 37.90 37.90 30.65 21.77 12.90 

72 ◦ 14.52 20.16 47.58 51.61 58.06 50.81 45.16 42.74 31.45 21.77 12.10 

90 ◦ 9.68 19.35 37.10 55.65 54.03 56.45 58.06 50.00 34.68 20.97 9.68 

108 ◦ 8.87 13.71 33.06 40.32 48.39 44.35 59.68 47.58 41.94 20.97 10.48 

126 ◦ 13.71 15.32 23.39 29.03 33.06 40.32 61.29 54.84 46.77 29.03 17.74 

144 ◦ 21.77 25.81 28.23 29.84 26.61 30.65 48.39 51.61 55.65 43.55 20.97 

162 ◦ 29.03 22.58 22.58 21.77 13.71 13.71 28.23 30.65 42.74 58.06 37.90 

180 ◦ 29.84 23.39 12.90 9.68 12.90 13.71 14.52 20.16 23.39 36.29 39.52 

Fig. 7. The average recognition rates for the probe data being NM, BG and CL with the view variation. 
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Table 8 

The recognition rates of different features. 

Feature Probe set 

NM BG CL 

[ f pose ] 60.92% 39.16% 29.71% 

[ f angle ] 46.97% 26.60% 25.61% 

[ f limb ] 42.40% 25.55% 10.63% 

[ f motion ] 48.95% 30.31% 30.38% 

[ f pose , f angle , f limb , f motion ] 63.78% 42.52% 31.98% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparing with some cross-view methods at probe angle 54 ◦ , 90 ◦ and 126 ◦ . 

The gallery angles are the remaining 10 angles except the corresponding probe an- 

gle. The proposed method achieves much higher recognition rates when the differ- 

ence between the gallery angle and the probe one is large. 
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GaitGANv1. The recognition rates are comparable with those

of GaitGANv2. It should be noticed that the proposed method

achieves a much better recognition rate when there is a clothing

variation. That means the proposed method is more robust to the

clothing variation. It is the advantage of the model-based features.

The raw feature is body joints and robust to clothing while the

appearance-based features tend to be changed by clothing. 

In [9] , Wu et al. proposes a method using CNN and achieves

very high recognition rates. It is also an appearance-based method

using human body silhouettes. But the experimental setting

in [9] is different from that of the proposed method. The mod-

els in [9] are trained using the first 74 subjects in CASIA B dataset.

To compare fairly, we also did experiments using the same exper-

imental setting with Wu’s method. The experimental results are

listed in Table 9 . 

The experimental results of DeepCNNs [9] and the proposed

method are also listed in Table 9 . Both models are trained with

gait sequences of the first 74 subjects. The method of DeepC-

NNs [9] has achieved a very high performance. There are two rea-

sons for this high accuracy. Firstly, the feature they used is a kind

of appearance-based one which is a high dimension one. We only

used 14 body joints as gait feature. Secondly, they train CNN with

pairs in a verification manner, so the number of combinations for

training could be more than a million. By contrast, our models

were trained in a classification manner nor a verification manner.

The number of samples were much less than that in [9] . 

4.6. Effectiveness on view variation 

From the previous experiments, it can be found the proposed

method can achieve comparable recognition rates with state-of-

the-art, and it is also more robust to clothing variation. Here we

also want to compare the proposed method with some cross-view

gait recognition methods to show the effectiveness on view varia-

tion. Some cross-view gait recognition methods are FD-VTM [36] ,

RSVD-VTM [37] , RPCA-VTM [38] , R-VTM [39] , GP+CCA [40] and

C3A [41] . The probe angles chosen are 54 ◦, 90 ◦ and 126 ◦, and it

is the same experimental setting with these methods in the origi-

nal papers by their authors. The experimental results are shown in

Fig. 8 . 

It can be clearly found that the proposed method achieves

much high recognition rates when the difference between the

gallery angle and the probe one is large. The greater is the differ-

ence, the more obvious improvements. The improvements can be

easily understood because the poses used for gait recognition are

in 3D spaces and normalized to the same view angle. That is the

reason the proposed model-based method is more robust to view

variation. 

4.7. Experimental results on CASIA E dataset 

For further evaluation on the performance of the proposed

method, we carried out experiments on the CASIA E dataset. Since

this dataset is still not public available, we implemented some
ethods by ourselves and can not cite the results from the original

aper. In the experiments there are three methods, and they are

EI+PCA [4] , GaitGANv2 [35] and the proposed PoseGait . The ex-

eriment settings for the three methods are that shown in Table 2 .

he experimental results rates are shown in Fig. 9 . We only list 4

robe angles with a 60 ◦ interval as the limited space. Each row

epresents a probe angle, the compared angles are 0 ◦, 60 ◦, 120 ◦

nd 180 ◦. Three columns in Fig. 9 shows the comparison with nor-

al walking (NM), carrying a bag (BG) and clothing (CL) condition,

espectively. 
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Table 9 

Average recognition rate(%) comparisons of the proposed method with Wu’s on CASIA-B. Both models are trained with the same 

experimental setting of 74 training subjects. 

Gallery angle NM #1-4 0 ◦-180 ◦

Probe angle NM #5-6 0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦ Mean 

DeepCNNs [9] 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1 

PoseGait 55.3 69.6 73.9 75 68 68.2 71.1 72.9 76.1 70.4 55.4 68.72 

Probe angle BG #1-2 0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦ Mean 

DeepCNNs [9] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4 

PoseGait 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5 

Probe angle CL #1-2 0 ◦ 18 ◦ 36 ◦ 54 ◦ 72 ◦ 90 ◦ 108 ◦ 126 ◦ 144 ◦ 162 ◦ 180 ◦ Mean 

DeepCNNs [9] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 53.98 

PoseGait 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 35.95 

Fig. 9. The experimental results on a large dataset, CASIA E, with over 10 0 0 subjects. 
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Table 10 

The computational cost of different steps in the proposed method. 

Step Time (ms) Description 

2D Pose estimation 91.2 GPU 

2D to 3D 204.3 CPU & Matlab code 

CNN feature extraction 1.78(CASIA B), 11.8(CASIA E) GPU 
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From the results it can be found that the proposed method

achieves comparable performance with the state-of-the-art

method, GaitGANv2. When there is clothing variation, the pro-

posed method is a little better than GaitGANv2. It is similar

with that in Fig. 7 . The experiments on the two datasets demon-

strates that the proposed method has its own advantage on view

variation. 

4.8. Computational cost analysis 

In the proposed method, most computational cost is from the

pre-processing step. That is the body pose estimation from im-

ages. We ran the proposed method on a server with a Tesla K80

(12GB) GPU and listed the time consumed of different steps in

Table 10 . For the 2D pose estimation step, all images were resized

to 368 × 368 as in [6] . It took about 0.2s to convert one 2D pose

to a 3D one. The computational cost of 2D to 3D actually is low

enough. But because the code is in Matlab language and is not op-

timized, it took a lot of time. It can be much faster if the code

is written in C/C ++ or some other languages. For the gait feature

extraction part, the CNN model for CASIA B is simpler than that

for CASIA E as described in Section 4.2 . The model for CASIA only

took 1.78ms on GPU. Even the heavy model for CASIA E only took

11.8ms. According to the time consumed for the proposed method.

It can be shown that the proposed method is fast and efficient. 

5. Conclusions and future work 

With the progress on human body modeling based on deep

learning, we proposed a model-based gait recognition method,

named PoseGait , in the paper to invest model-based features for

gait recognition. PoseGait employs 3D human body poses as fea-

ture. The feature is very compact since there are only body joints

in it. Experimental results on CASIA B and CASIA E datasets

show that proposed method performance is comparable with some

state-of-the-art appearance-based methods. In addition, we com-

bine three types of spatio-temporal features based on human prior

knowledge with body pose to enrich the feature and improve the

recognition rate. The experiments also show that CNN can extract

temporal feature efficiently and achieve better results than LSTM

or RNN. 

It also should be noticed that the proposed model-based

method just achieves comparable accuracy with state-of-the-art.

Even so, it shows that model-based methods have great potential

on gait recognition. Besides OpenPose, there are also some other

work which can model human bodies with more details. Such as

DensePose in [42] can model the human body surface with a mesh.

We ever tried to use the mesh for gait recognition. But DensePose

can only model the body surface which faces to the camera and

can not estimate the surface occluded. That makes the data is not

completed and difficult to be used for gait recognition. In future

human body modeling will continue to improve. Surely model-

based gait recognition will also be improved with better human

body models. 
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