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Abstract

Gait recognition is a particularly effective way to avoid the spread of COVID-

19 while people are under surveillance. Because of its advantages of non-contact

and long-distance identification. One category of gait recognition methods is

appearance-based, which usually extracts human silhouettes as the initial in-

put feature and achieves high recognition rates. However, the silhouette-based

feature is easily affected by the view, clothing, bag, and other external vari-

ations. Another category is based on model-based, one popular model-based

feature is extracted from human skeletons. The skeleton-based feature is robust

to many variations because it is less sensitive to human shape. However, the

performance of skeleton-based methods suffers from recognition accuracy loss

due to limited input information. In this paper, instead of relying on coordi-

nates from skeletons, we exploit that pose estimation maps, the byproduct of

pose estimation. It not only preserves richer cues of the human body compared
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with the skeleton-based feature, but also keeps the advantage of being less sen-

sitive to human shape compared with the silhouette-based feature. Specifically,

the evolution of pose estimation maps is decomposed as one heatmaps evolution

feature (extracted by gaitMap-CNN) and one pose evolution feature (extracted

by gaitPose-GCN), which denote the invariant features of whole body structure

and body pose joints for gait recognition, respectively. Our method is evaluated

on two large datasets, CASIA-B and the CMU Motion of Body (MoBo) dataset.

The proposed method achieves the new state-of-the-art performance compared

with recent advanced model-based methods.

Keywords: COVID-19, Gait Recognition, Pose Estimation Maps, Heatmaps

Evolution Feature, Poses Evolution Feature, Graph Convolutional Networks
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Figure 1: Comparison of three types of raw input feature in three walking conditions on

CASIA-B dataset. NM: normal walking, BG: walking with a bag, CL: walking with a coat. a)

Original video frames. b) Human silhouette-based input feature. c) Human pose estimation

results. d) Human skeleton-based input feature. e) Human pose estimation maps based input

feature.
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1. Introduction

1.1. Motivation

With the outbreak of novel coronavirus 2019 (COVID-19), the development

of biometric recognition technologies to address the various concerns induced by

the rapid spread of COVID-19 has become urgent. For contact biometrics such5

as fingerprint and palm-print, it is clear that they would accelerate the spread

of the virus. For non-contact biometrics, face recognition is one of the mature

biometric recognition technologies. But it is very challenging to identify subjects

when people wear facial masks. The iris recognition also faces challenges when

people wear virus protection glasses, and also brings some risks that people may10

touch the devices due to the iris data collection at close range.

Gait, is a walking style of a person, which also can be used as a biometric

feature to identify a person. Compared with the above biometric features, gait

has its unique advantages such as being non-contact and hard to fake. More

importantly, gait is still available at a long-distance human identification, which15

is particularly suitable for monitoring people during the period of COVID-19.

Since non-contact and long-distance are two important factors to avoid the rapid

spread of COVID-19. Gait recognition technology also has a great potential

application in other areas, such as video surveillance, crime prevention, and

forensic identification.20

Gait is a behavioral biometric, it would change drastically when there are

some variations, such as view, carrying, clothing, and occlusion. In order to

improve the robustness of extracted features, some earlier model-based ap-

proaches [1, 2] tried to capture motion patterns by modeling the human body

for each subject. However, it is very challenging to locate and track the human25

body accurately at that earlier time because of technical reasons.

The appearance-based gait recognition approaches [3, 4] usually extract the

human silhouettes (Fig. 1 (b)) from RGB images as raw input data. These

approaches are more popular than the model-based ones in the past two decades

because human silhouettes are easy to obtain and can achieve high recognition30
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rates. However, there are many drastic variations in real applications, such

as changes in clothing or carrying. These variations would change the human

silhouette shape greatly and give rise to reducing performance dramatically.

By contrast, model-based approaches are not so sensitive to human shape and

human appearance because they focus on human body structure and movement35

modeling.

Recently, with the development of deep learning and human body pose esti-

mation. The performance of locating and tracking human body parts becomes

more and more accurate, which brings hope to the model-based approaches.

Some works [5, 6, 7, 8, 9] extracted accurate human skeleton feature (Fig. 1 (d))40

by using the human body pose estimation algorithm (Fig. 1 (c)). These works

have achieved good performance and made a great contribution to the devel-

opment of model-based approaches. But these works suffer from recognition

accuracy loss compared with appearance-based approaches. One main reason

for this is that the skeleton usually consists of several body joint coordinates,45

which is a low dimensional feature and the contained information is very limited

compared with the human silhouette.

In this paper, instead of relying on the coordinates from human joints, we

exploit pose estimation maps (Fig. 1 (e)), the byproduct of pose estimation.

We find that pose estimation maps not only preserve richer cues of the human50

body to benefit gait recognition compared with the skeleton-based feature, but

also are less sensitive to human appearance compared with the silhouette-based

feature. Inspired by the popular work [10] of human action recognition, we,

therefore, propose a novel model-based gait recognition method, PoseMapGait,

which exploits human pose estimation maps as the raw input data. Different55

from [10] which created two handcrafted images from heatmaps and poses data

before feeding into CNN, our invariant gait feature is learned automatically from

heatmaps and poses data by set pooling and gait graph construction. Simulation

results demonstrated that the pose estimation maps feature can bring signifi-

cant performance improvement compared with recent advanced model-based60

approaches.
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1.2. Method Overview and Contributions
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Figure 2: The overview of the proposed method. a) Pose estimation maps of each body

part are predicted by extracting the byproduct of pose estimation. b) For each frame, pose

estimation maps are aggregated to generate a heatmap (b.1) and a pose (b.2). c) Heatmaps

evolution feature extraction, which denotes the invariant feature of body structure. d) Poses

evolution feature extraction, which denotes the invariant feature of the body pose joints. e) In

the inference stage, two types of evolution features are concatenated to measure the similarity

between the gallery and probe videos, and then predict the human ID label.

The overview of the proposed method is shown in Fig. 2. Given each frame

of a video, we predict a pose estimation map for each body part by extracting

the byproduct of pose estimation. These pose estimation maps not only can65

preserve global information, which reflects whole shapes that suffer less from

the appearance noise, but also preserve local information, which reflects the

location movement of body parts.

To reduce the redundancy of pose estimation maps, we average pose estima-

tion maps of all body parts to form an averaged pose estimation map (heatmap,70

Fig. 2 (b.1)) for each frame. More importantly, the heatmap can better rep-

resent global human body structure information compared with separate pose

estimation maps (Fig. 2 (a)). According to the study of Liu et al. [10], the

averaged pose estimation map (heatmap) provides richer information to reflect

human body structure and is beneficial to object recognition. In order to ex-75
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tract high-level spatial-temporal information of body structure from a sequence

of heatmap images, the heatmap convolutional neural networks (gaitMap-CNN)

is designed to extract heatmaps evolution feature.

Since the heatmap image has no explicit differentiation of body parts, that

is, there is no connectivity relationship between body part joints. We further80

predict joint location from the pose estimation map of each body part, gener-

ating a pose (Fig. 2 (b.2)) for each frame to extract the body pose invariant

feature. Unlike the above skeleton-based methods [5, 6], which merely con-

sidered a sequence of human joint coordinates modeling, we construct a gait

graph that not only considers inter-frame connection with the same joints, but85

also considers intra-body connection based on naturally connected human body

joints. The pose graph convolutional networks (gaitPose-GCN) is designed to

extract high-level poses evolution feature from the gait spatial-temporal graph.

Intuitively, the heatmaps evolution feature (Fig. 2 (c) yellow vector) and

poses evolution feature (Fig. 2 (d) orange vector) benefit the recognition of90

general movements of global body structure and elaborate movements of body

parts. Thereby, both features are fused to generate the discriminative feature

and predict the human ID label.

Compared with appearance-based methods [3, 4, 11], the proposed method

has more robustness and enhances the utility of gait recognition in real applica-95

tions. Unlike most appearance-based works [3, 4, 11], they usually use human

silhouettes as the initial input data, the silhouette would be changed greatly

when some big variations exist in the real world, as shown in the variation of

walking with a coat in Fig. 1 (b). We exploit the pose estimation maps, which

are not so sensitive to human shape. In addition, they [3, 4] would ignore the hu-100

man body part modeling because the human silhouette is a kind of image which

is combining hands, feet, and other human parts together. Fan et al. [12] divide

silhouette equally into four parts in order to model the body part movement.

However, it can not strictly divide the human body structure. In contrast, pose

estimation maps can model the local movement more accurately as it consists105

of separate human body joints.
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Compared with model-based methods [6, 7, 9], the proposed method pro-

vides a new way to exploit a model-based algorithm, which inspires researchers

to rethink model-based approaches and promotes the development of gait recog-

nition. Unlike previous works [5, 6, 7, 9], they usually extract discriminative110

features from human body skeletons (Fig. 1 (c)), which suffer from accuracy loss

due to limited input information. We abandon the human pose and use a more

informative feature, pose estimation maps, the byproduct of pose estimation, to

solve this challenge. In addition, PTSN [5], PoseGait [9] and other works [6, 7]

use CNN or LSTM to analyze coordinates from skeletons, they partly ignore115

the human topological structure such as the connectivity relationship between

body part joints. While we construct a gait graph to analyze both inter-frame

connections with the same joints and intra-body connections based on naturally

connected human body joints.

To summarize, our contributions are three-fold.120

• Flexible: We propose a novel model-based gait recognition method as the

evolution of pose estimation maps, called PoseMapGait, which exploits

human pose estimation maps as the initial input data. Compared with

appearance-based methods that use human silhouettes as input data, the

pose estimation maps are less sensitive to human shape. In addition, they125

have richer information compared with the model-based methods that use

human skeletons as input data. The visualization of three types of input

data is shown in Fig 1.

• Interpretable: Instead of using pose estimation maps directly, the evolu-

tion of pose estimation maps is decomposed as an evolution feature (Fig. 2130

(c) yellow vector) of heatmaps and an evolution feature (Fig. 2 (d) orange

vector) of estimated 2D human poses in a biologically interpretable way,

which denote the invariant features of whole body structure and body pose

joints for gait recognition, respectively.

• Effective: Some experiments are performed on popular gait dataset CASIA-135

B [13] and the CMU Motion of Body (MoBo) dataset [14]. Compared with
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previous model-based methods using skeleton pose information or with the

assistance of hand-crafted features, our models achieve a state-of-the-art

recognition rate. Experiment results show that our proposed method is

more robust to various variations, which enhances the utility of gait recog-140

nition in real applications.

2. Related Work

In this section, we will briefly review existing gait recognition methods. Ap-

proaches in the recent gait recognition literature can be roughly grouped into

two categories, appearance-based and model-based approaches. We also briefly145

introduce graph convolutional neural networks in this section.

2.1. Appearance-Based Approaches

Appearance-based methods usually use the human silhouettes as raw input

data, and these methods can be also roughly divided into two categories, namely

template-based approaches and sequence-based approaches.150

Template-based approaches would create a gait template by rendering

pixel-level operators on the human silhouette images. Template creation and

template matching are common pipelines of template-based approaches. Gait

Energy Image (GEI) template [15] and Chrono-Gait Image (CGI) template [16]

are two very popular gait template features. In the template matching step, the155

most common solutions are to reduce the effect of view variation by using View

Transformation Model (VTM). VTM can transform gait template features from

one view to another view for improving the discriminative capability of the tem-

plate feature. Like Yu et al. [17] proposed Stacked Progressive Auto-Encoders

(SPAE) can transform GEI with arbitrary views to a specific angle GEI. Gait-160

GANv2 [18] was proposed to directly deal with the view, bag, and clothing vari-

ation by using a generative adversarial network model, while SPAE [17] requires

7 stacks to deal with small view variation one by one. To lighten the burden

of view-invariant feature extraction for CNNs, DV-GEIs [4, 3] was proposed

8



to provide a much denser view sampling to deal with the cross-view problem.165

These template-based methods have made a great contribution to the develop-

ment of gait, however, the performance is not good enough because it would

reduce some temporal information during the process of template generation.

Sequence-based approaches directly employ a sequence of human gait

features like human silhouettes as input data. Wu et al. [19] proposed the first170

work based on deep CNNs for gait recognition to extract gait features from a

sequence of human silhouettes. Different from Wu et al. [19] which uses con-

tinuous human silhouettes, Chao et al. [11] introduced the GaitSet network

to further improve performance based on unordered silhouettes set. Rather

than dealing with human silhouettes for gait recognition, GaitNet [20] was pro-175

posed to explicitly disentangle pose and appearance features from RGB images.

Sequence-based approaches can achieve high performance in terms of cross-view

condition. This is because a sequence of human gait features contains rich tem-

poral information compared with template-based methods. However, it can not

deal with cross-carrying and cross-clothing variations very well. The main rea-180

son is that human appearance and shape can be changed greatly when these

variations exist in the real world, and lead to a decrease in performance.

2.2. Model-Based Approaches

The model-based approaches extract features through modeling human body

structure and analyzing movement patterns of different human body parts.185

These methods are robust to many variations because they are not so sensi-

tive to human appearance compared with appearance-based approaches.

In the early works, model-based approaches are not an easy task because it

requires human bodies are correctly and high accurately modeled. To obtain

human joint positions, some earlier methods [1] even mark human body parts190

manually or with the assistance of some specific devices. Nixon et al. [21] argue

that human body movement has the ability to recognize different subjects’ gait

patterns. They simulate legs and leg movement by using a simple stick model

and an articulate pendulum movement. A multi-connected rigid body model
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was proposed by Wang et al. [2]. They divide into 14 parts and each part is195

connected through a joint. This work shows that the changes in the angle of

each joint are beneficial to extracting the temporal information of gait.

In recent years, with the development of pose estimation algorithms. Some

researchers [22] extract accurate human body joints information from an RGB

image or a video by using pose estimation models. Feng et al. [23] used a200

Long Short Term Memory recurrent neural network to extract temporal fea-

ture from human joints. The body structure spatial information was lost be-

cause the authors just considered temporal information from each human joint

heatmap separately. Liao et al. [5] proposed a pose-based temporal-spatial net-

work (PTSN) to extract static and dynamic information from the human body205

skeleton. PTSN-3D [6] was proposed to future improve its robustness to view

variation by estimating 3D pose from a single image. In the following years,

Liao et al. [9] introduced PoseGait based on the human body pose and human

prior knowledge. This method can achieve a high recognition rate despite the

low dimensional feature with only 14 body joints. In order to promote the210

study of model-based approaches, OU-ISIR provides a multi-view large popula-

tion dataset with pose sequence [7], this dataset is opened to the public for re-

search. These works boost greatly the development of model-based approaches,

but it still needs to further improve the recognition rate due to limited input

information compared with appearance-based methods.215

2.3. Graph Convolutional Neural Networks

Traditional neural networks CNN or LSTM usually process data with grid

attributes (such as images), but many data have a topological structure in daily

life and scientific research. Recently, graph convolutional networks GCN ap-

peared and developed quickly. There are two types of convolution operations220

according to the high-dimensional domain. The first one is based on the spec-

tral domain and the second one is based on the spatial domain. The first one

uses the eigenvalues and eigenvectors of the Laplacian matrix of the graph into

spectrum [24]. The second one processes the nodes in the graph and their neigh-
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boring nodes based on some rules. The spatial-temporal graph convolutional225

networks (ST-GCN) [25] is based on the second one. ST-GCN has achieved

representative performance by applying graph convolution to the human action

recognition field. Our paper is also based on the spatial domain.

Recently, graph convolutional neural networks (GCN) has been successfully

applied in many works for human action recognition. Yan et al. [25] proposed an230

ST-GCN network to extract spatial-temporal feature from the human skeleton.

Graph network is also widely used for other fields, such as point cloud com-

pression [26] and sparse feature extraction [27]. In contrast, GCN is not used

often for gait recognition. This is because gait recognition usually uses human

silhouettes as gait raw input feature, and a human silhouette is an image that235

lacks a topological structure. In this paper, we exploit pose estimation maps in

gait recognition and extract their spatial-temporal information by constructing

a gait graph.

3. Generation of Pose Estimation Maps

In this section, we will describe the generation of robust gait input features.240

Given a video of people’s walking sequence, we extract the pose estimation maps

(Fig. 2 (a)) from each frame, and then generate a heatmap (Fig. 2 (b.1)) and a

pose (Fig. 2 (b.2)) to represent human body characteristic of each frame.

Pose Estimation Maps: The goal of human pose estimation can be mod-

eled as a structure prediction problem. Fang et al. [21] proposed AlphaPose245

which is an accurate multi-person pose estimator. Instead of directly using Al-

phaPose [21] to evaluate the coordinates of each human pose joints, we exploit

the hidden layer of AlphaPose to extract pose estimation maps for body joints.

AlphaPose [21] mainly includes three steps to evaluate human pose. 1) detect

the bounding box of human, 2) predict estimation maps for body joints 3) pre-250

dict coordinates of each body joint based on predicted estimation maps. In fact,

the pose estimation map is a byproduct of pose estimation.

Let mi denote the pose estimation map from body joint i. The whole pose
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estimation maps output can be formulated as M = {m1,m2, ...,mN}, where

N is the total number of body joints. There are 17 pose estimation maps,255

including one joint of the nose, and two joints (right and left one) of the eyes,

ears, shoulders, elbows, wrists, hips, knees, and ankles, as shown in Fig. 2 (a).

These pose estimation maps will be normalized in a fixed human bounding box

during the extraction. Consequently, the human bodies of different subjects will

be normalized to a fixed size, which removes the variation of a human body size260

changes due to the different distances between the subject and the camera.

Heatmaps & Poses: For a RGB frame of a video, N types of pose estima-

tion maps are predicted, namely {m1,m2, ...,mN}. Since the pose estimation

map of each body part is separate, we average them and as describe a heatmap h

(Fig. 2 (b.1)) to better represent global human body structure information. The265

averaging operation can also reduce the redundancy of pose estimation maps.

The heatmap h can be expressed as follows:

h =
1

N

N∑
i=1

mi (1)

We further predict joint location from pose estimation map of each body

part, generating a pose (Fig. 2 (b.2)) for each frame to extract body pose invari-

ant feature. The pose consists of N coordinates of joints, that is {v1, v2, ..., vN}.270

Each vi has 2D coordinates (x, y) and one confidence score c. vi is often esti-

mated via Maximum A Posterior (MAP) criterion [28]. For each joint’s coordi-

nates and confidence score can be expressed as:

vi{x, y} = argmax
v∈Z

(mi) (2)

vi{c} = max
v∈Z

{mi} (3)

where Z ∈ R2 denote all coordinates on the image mi. The confidence score c is

the maximum value of pose estimation map. In the end, each frame of a video275

is described as a heatmap and a pose. Therefore, the video is converted to the

evolution of heatmaps and the evolution of poses.
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Figure 3: The structure of gaitMap-CNN. ”SP” represents set pooling, it aims to aggregate

feature maps from every frame of heatmap into a set feature map.

4. Evolution of Pose Estimation Maps

This section describes the high-level evolution feature extraction from pose

estimation maps by gaitMapPose-Net, which consists of two streams, namely,280

heatmap convolutional neural networks (gaitMap-CNN) and pose graph convolu-

tional networks (gaitPose-GCN). gaitMap-CNN is used to extract the heatmaps

evolution feature, while gaitPose-GCN is developed to extract the poses evolu-

tion feature.

4.1. Heatmaps Evolution Feature285

Given a dataset with T frames heatmaps. A set of n heatmaps H = {ht|t =

1, 2, ..., T} are put into heatmap convolutional neural networks (gaitMap-CNN).

The structure of gaitMap-CNN is inspired by the network framework of Chao et

al. [11] and [29], as shown in Fig. 3. H is a tensor with four dimensions, that

is, set dimension, image channel dimension, image height dimension, and image290

width dimension. We use 3 steps to deal with the gait recognition, formulated

as:

fmap = G(F (H)) (4)
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where F is a convolutional network aims to extract the frame-level features

({f t|t = 1, 2, ..., T}) from each gait heatmap. G is a function which used to map

a set of frame-level features ({f t|t = 1, 2, ..., T}) to a set-level feature fmap. G295

takes set frame-level features as an input, it is a permutation invariant function

which is formulated as:

G({f t|t = 1, 2, ..., T}) = G({fπ(t)|t = 1, 2, ..., T}) (5)

where π is any permutation [30], this operation makes gait immune to the

permutation of frames based on the set perspective. And can naturally integrate

frames from different videos under different scenarios. G is implemented by an300

operation called set pooling G(·) = max(·) +mean(·) +median(·), which aims

to aggregate gait information of elements in a set. Compared with typical

convolutional neural networks which miss the temporal information extraction,

set pooling extracts the set-level feature from high-level feature maps, it not

only preserves temporal information well, but also processes spatial information305

sufficiently. The diagram of set pooling can be shown in Fig. 3. fmap is the

output heatmaps evolution set-level feature.

4.2. Poses Evolution Feature

Gait Graph Construction: Heatmap captures more global body struc-

ture information of the gait sequence, while for better recognition performance,310

body pose information captured by the skeleton key points is also important.

Inspired by ST-GCN [25], we compute a body pose information embedding

from the skeleton keypoints spatial-temporal graph by employing GCN based

framework. A representation of the pose sequences is generated by using pose

graph convolutional networks (gaitPose-GCN). Specifically, given a dataset with315

N joints and T frames, we create an undirected spatial-temporal graph as the

following formula:
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G = (V,E) (6)

V = {vti|t = 1, ..., T, i = 1, ..., N} (7)

ES = {vtivtj |(i, j) ∈ Φ} (8)

EF = {vtiv(t+1)j} (9)

where the node-set V consists of all the joints in a T frames skeleton se-

quence. The number of input joints is 18 in the framework of ST-GCN [25],

while the number of output heatmaps in AlphaPose [21] is 17, without neck320

joint. In order to make the joints apply to the ST-GCN network, the mean of

the left shoulder and right shoulder is the neck joint.

E is called edge set, composed of two subsets. The first subset ES =

{vtivtj |(i, j) ∈ Φ} represents the intra-joint connection at each frame, it rep-

resents the spatial gait information. Where Φ is the set of naturally connected325

human body joints, Φ = {(1, 0), (1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), (1, 8),

(8, 9), (9, 10), (1, 11), (11, 12), (12, 13), (0, 14), (0, 15), (16, 14), (15, 17)}, as

shown in Fig. 4 gray edges. The second subset depicts the inter-frame connec-

tion with same joints in consecutive frames, denoted as EF = {vtiv(t+1)j}, as

shown in Fig. 4 blue edges, it represents the temporal gait information.

Nose(0)

Neck(1)

Rshoulder(2)

Lshoulder(5)

Lelbow(6)

Relbow(3)

Rwrist(4)

Lwrist(7)

Lhip(11)

Rhip(8)

Rknee(9) Lknee(12)

Lankle(13)

Rankle(10)

Reye(14) Leye(15)

Lear(17)

Rear(16)

Figure 4: Gait Graph Construction. Orange dots denote the body joints. Gray edges denote

the intra-body edges set ES which represents spatial graph of poses. Blue edges denote the

inter-frame edges set EF which represents temporal graph of poses.
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330

Graph Convolution Neural Networks for the poses evolution feature

extraction is formulated as:

fpose(vti) =
∑

vtj∈B(vti)

1

Zti(vtj)
fin(vtj) ·w(lti(vtj)) (10)

where fpose is output poses evolution feature, w is the weight function to

provide a weight vector for computing the inner product with input feature

lti. Mapping function lti(vtj) = d(vtj , vti) is the label map for the single frame335

case at vertex vtj . Here d(vtj , vti) denotes the minimum length of any path

from vtj to vti, for example, d = 0 refers to the root node itself and d = 1

refers to the remaining neighbor nodes. The convolution operation on graphs is

defined to the cases where the input features map fin resides on a spatial graph

G(V,E). The normalizing term is defined as Zti(vtj) = {vtk|lti(vtk) = lti(vtj)}.340

B(vti) = {vqj |d(vtj , vti) ≤ K, |q − t| ≤ Γ/2}, where K is the spatial range, Γ is

the temporal range, called the temporal kernel size.

4.3. Feature Fusion and Loss Function

In order to make the gait feature more discriminative. The heatmaps evolu-

tion feature fmap and poses evolution feature fpose are concatenated to a final345

invariant gait feature fgait, which benefit the recognition of general movements

of global body structure and elaborate movements of body parts, formulated as:

fgait = cat(fmap, fpose) (11)

where cat means concatenate operation. The corresponding features fgait

among different subjects will be used to compute the loss value by triplet loss

function [31], as shown in equation 12. Where d means the distance between350

two features, fa
gait, f

p
gait and fn

gait denote the anchor sample, positive sample

and the negative sample, respectively.

Ltriplet = max(d(fa
gait, f

p
gait)− d(fa

gait, f
n
gait) +margin, 0) (12)
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5. Experimental Results and Analysis

5.1. Datasets

To evaluate our proposed method, RGB color video datasets are needed355

because the human pose estimation maps are extracted from RGB color im-

ages rather than from silhouettes. One popular gait dataset, CASIA-B Gait

Dataset [13], not only provides human silhouettes, but also provides the origi-

nal color video to the public for research. Therefore, CASIA-B Gait Dataset [13]

is selected to evaluate our method. The Institute of Scientific and Industrial Re-360

search (ISIR), Osaka University (OU) also has provided many large population

datasets such as OU-MVLP [32] and OU-ISIR [33]. However, the original RGB

video is not currently available to the public due to privacy issues. Recently,

ISIR provides multi-view large population dataset with pose sequence [7]. How-

ever, the input data of our proposed method is based on the byproduct of pose365

estimation rather than the pose estimation final result. Then, we choose the

CMU Motion of Body (MoBo) dataset [14] as the second dataset to evaluate

our proposed method because it provides original RGB frames and has multiple

variations to evaluate the proposed method.

CASIA-B dataset [13], is one of the popular public gait datasets, it was370

created at the Institute of Automation, Chinese Academy of Sciences (CASIA)

in 2005. It consists of 31 females and 93 males, and the total number of subjects

is 124. Each subject has 10 sequences, including 6 sequences of normal walking

(NM), 2 sequences of walking with a bag (BG), and 2 sequences of walking with

a coat (CL), as shown in Fig. 1 (a). In addition, there are 11 cameras to capture375

the subjects at the same time, the view angles are {0◦,18◦,· · · , 180◦}.

The CMU Motion of Body (MoBo) dataset [14] was collected at

Carnegie Mellon University in March 2001. It contains 25 individuals walking on

a treadmill in the CMU 3D room. Each subject has four different walk patterns

with one sequence, including slow walking, fast walking, incline walking, and380

walking with a ball, as can be shown in Fig. 5. The average walking speeds of

slow walking, fast walking, incline walking, and walking with a ball are 2.06,
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2.82, 1.96, and 2.04 mph, respectively. In terms of incline walking, the treadmill

was set to the maximum incline of 15◦. In addition, each subject is captured

using 6 high-resolution color cameras distributed evenly around the treadmill,385

cameras labels are vr03 7, vr05 7, vr07 7, vr13 7, vr16 7, and vr17 7. According

to the angle definition of the CASIA-B dataset, we define the angle set of MoBo

dataset is {0◦,45◦,90◦, 180◦, 225◦, 315◦}, as shown in Fig. 6

Walking with a ball Fast walkingSlow walking Incline walking

Figure 5: Four walking conditions on MoBo dataset.

0⁰

45⁰

90⁰

180⁰

225⁰

315⁰

Figure 6: View angle definition on MoBo [14] dataset.

5.2. Experimental settings

CASIA-B dataset [13]: In order to compare with latest model-based390

methods, our experimental setting is the same as PTSN [5], PTSN-3D [6] and

PoseGait [9]. That is, the first 62 subjects are put into the training set and

the rest of the subjects are put into the test set. In the test set, the gallery set

consists of the first 4 normal walking sequences of each subject, and the probe
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set consists of the rest of 2 normal walking sequences, 2 sequences of walking395

with a bag, and 2 sequences of walking with a coat, as shown in Table 1.

Table 1: Experimental setting on CASIA-B dataset. NM: normal walking, BG: walking with

a bag, CL: walking with a coat.

Training
Test

Gallery Set Probe Set

ID: 001-062 ID: 063-124 ID: 063-124

Seqs: NM01-NM06 Seqs: NM01-NM04 Seqs: NM05-NM06

BG01-BG02, CL01-CL02 BG01-BG02, CL01-CL02

The CMU Motion of Body (MoBo) dataset [14]: Following the ex-

perimental setting of the above method, the first 13 subjects are put into the

training set and the remaining 12 subjects are put into the test set. In the test

set, the gallery set consists of slow walking condition, because it is closer to400

natural walking compared with other walking patterns. For the probe set, it

consists of several conditions, that is, fast walking, incline walking, and walking

with a ball, as shown in Table 2. Each condition only has one walking sequence.

Table 2: Experimental setting on the CMU Motion of Body (MoBo) dataset.

Training
Test

Gallery Set Probe Set

ID: 01-13 ID: 14-25 ID: 14-25

slow walking, fast walking, slow walking fast walking, incline walking,

incline walking, walking with a ball walking with a ball

Implementing details: The gaitMapPose-Net network consists of two

streams, namely, gaitMap-CNN and gaitMapPose-Net. In terms of gaitMap-405

CNN network, the input size of pose estimation maps is 64 × 44. The total

number T of set frames is to be 30. For the gaitMapPose-Net network, the

number N of human joints is set as 18. The spatial range K and temporal

range Γ are set to be 2 and 9. Adam is selected as an optimizer [34]. The learn-

ing rate is 1e − 4. The margin in triplet loss is set to be 0.2. The models are410

trained with 2 NVIDIA 1080TI 12GB. The implementation is based on PyTorch

with CUDA 9.0.
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5.3. Experimental results and discussions on CASIA-B dataset

The experimental results of the proposed method PoseMapGait on the CASIA-

B dataset, as shown in Fig 7, including normal walking, carrying a bag, and415

clothing three conditions. The gallery set consists of the first 4 normal walking

sequences with 11 views. The probe set includes three sets, that is, the rest

2 normal sequences, 2 walking with bag sequences, and 2 walking with a coat

sequences, each set also has 11 views, as shown in Fig. 7. For each probe set of

evaluation, there are 121 recognition rates in each figure. From Fig. 7, it can be420

found that PoseMapGait can achieve a high recognition rate when the gallery

angle is equal to the probe angel, and the overall performance is the best when

the probe set under normal walking sequences, following by walking with a bag

sequence.
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Figure 7: The experimental results when probe under three conditions on CASIA-B dataset.

In order to study the complementary of between heatmaps evolution feature425

(extracted from heatmaps Fig. 2 (b.1)) and poses evolution feature (extracted

from poses Fig. 2 (b.2)) for gait recognition, three different models are trained

on CASIA-B dataset. MapGait is the model trained with heatmaps by using

gaitMap-CNN network, PoseGraphGait is the model trained with poses by using

gaitPose-GCN network, while PoseMapGait is the model trained with the fusion430

of heatmaps and poses by using gaitMapPose-Net network. Because of limited

space, we only list 4 probe angles with a 36◦ interval, that is, 36◦, 72◦, 108◦

and 144◦. The first column of Fig. 8 compares the recognition rates at different

probe angles in normal walking sequences, the second column is for the compar-

ison in walking with a bag sequence, and the third column is in walking with a435
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Figure 8: The complementary between body structure and body pose joints . From left column

to right column are NM, BG and CL condition respectively. MapGait, PoseGraphGait and

PoseMapGait are models trained with heatmaps data (Fig. 2 (b.1)), poses data (Fig. 2 (b.2)),

and the fusion of two data, respectively.
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coat sequences. From Fig. 8, we can see the performance of MapGait is better

than that of PoseGraphGait at many points. One reason for this is that the

input data of MapGait contains more body structure information than that of

PoseGraphGait. In addition, the PoseMapGait model achieves the best per-

formance among them, which shows that the poses evolution feature can bring440

performance improvement to the heatmaps evolution feature despite its limited

input information (only 18 joints).

5.4. Comparisons with model-based approaches on CASIA-B dataset

To analyse the performance of our proposed methods PoseGraphGait, Map-

Gait, and PoseMapGait, we compare them with recent state-of-the-art model-445

based methods on CASIA-B dataset, including PTSN [5], PTSN-3D [6] and

PoseGait [9], where the input data of PTSN [5] is based on the 2D human

joints, PTSN-3D [6] and PoseGait [9] are based on the 3D human joints. The

comparison is shown in Table 3, results are the mean accuracies on rest 10 views

excepting the identical-view cases, we can get the mean accuracies by averaging450

the 10 accuracies in Fig. 8.

From Table 3, it is clear that PoseMapGait can achieve the best accuracy on

mean accuracy of 11 gallery views in all three walking conditions, that is, 75.7%

(NM), 58.1% (BG), and 41.2% (CL), respectively. The mean accuracy gap

between the PoseMapGait (58.1%) and the state-of-the-art method PoseGait455

(39.6%) can even reach 18.5% under the carrying a bag condition. The second-

best performance is MapGait, which takes human structure heatmaps as input

data. The high performances of MapGait and PoseMapGait show that the pose

estimation maps feature is more able to promote the development of model-

based approaches compared with the human skeleton-based feature.460

In addition, the mean performance of PoseGraphGait is also better than

those of recent advanced model-based methods [5, 6, 9] whether under the con-

dition of normal walking, or under the conditions of walking with a bag and

walking with a coat. The input data between these methods and ours are all

based on human skeletons. Unlike these methods which merely considered a se-465
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Table 3: Average recognition rate (%) comparisons with model-based approaches on CASIA-B

dataset. Excluding Identical-view Cases. (NM: normal walking, BG: walking with a bag, CL:

walking with a coat)
Gallery angle NM #1-4 0◦-180◦

Probe angle NM #5-6 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

PTSN [5] 34.5 45.6 49.6 51.3 52.7 52.3 53 50.8 52.2 48.3 31.4 47.4

PTSN-3D [6] 38.7 50.2 55.9 56 56.7 54.6 54.8 56 54.1 52.4 40.2 51.9

PoseGait [9] 48.5 62.7 66.6 66.2 61.9 59.8 63.6 65.7 66 58 46.5 60.5

PoseGraphGait (ours) 46.5 66.3 71.9 74.9 71.0 70.4 68.6 71.9 70.6 65.2 47.3 65.9

MapGait (ours) 56.5 71.5 78.0 79.6 74.0 74.4 73.8 77.8 76.0 73.5 58.6 72.2

PoseMapGait (ours) 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7

Probe angle BG #1-2 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

PTSN [5] 22.4 29.8 29.6 29.2 32.5 31.5 32.1 31 27.3 28.1 18.2 28.3

PTSN-3D [6] 27.7 32.7 37.4 35 37.1 37.5 37.7 36.9 33.8 31.8 27 34.1

PoseGait [9] 29.1 39.8 46.5 46.8 42.7 42.2 42.7 42.2 42.3 35.2 26.7 39.6

PoseGraphGait (ours) 37.9 47.3 54.4 55.1 56.3 51.5 51.1 53.6 53.4 48.8 35.0 49.5

MapGait (ours) 43.5 51.1 59.7 60.7 62.5 56.9 55.9 58.6 61.1 55.2 41.9 55.2

PoseMapGait (ours) 47.7 56.1 63.9 63.3 64.2 59.5 58.1 61.5 61.9 58.2 44.3 58.1

Probe angle CL #1-2 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

PTSN [5] 14.2 17.1 17.6 19.3 19.5 20 20.1 17.3 16.5 18.1 14 17.6

PTSN-3D [6] 15.8 17.2 19.9 20 22.3 24.3 28.1 23.8 20.9 23 17 21.1

PoseGait [9] 21.3 28.2 34.7 33.8 33.8 34.9 31 31 32.7 26.3 19.7 29.8

PoseGraphGait (ours) 24.6 32.8 34.8 38.6 37.9 39.6 39.8 37.8 28.5 27.1 24.1 33.2

MapGait (ours) 27.7 35.3 42.0 45.2 43.2 44.7 43.1 41.9 33.8 30.1 26.5 37.6

PoseMapGait (ours) 30.4 41.9 45.2 48.9 47.3 48.1 46.5 44.9 36.0 34.5 29.6 41.2

quence of human joint coordinates modeling, we construct a gait graph that not

only considers inter-frame connections with the same joints, but also considers

intra-body connections based on naturally connected human body joints. The

comparison shows that the pose graph gait can further boost the development

of the pose skeleton for gait recognition.470

5.5. Comparisons with appearance-based approaches on CASIA-B dataset

As mentioned in the previous part of the paper, the model-based feature

(pose estimation maps) used in the proposed method is compact and has less re-

dundant information compared with the appearance-based feature. This means

that the joint maps feature extraction is more challenging for model-based al-475

gorithms considering the prediction accuracy of joint maps’ location. In order

to show the effectiveness of the pose estimation maps feature, we compare it

with recent state-of-the-art appearance-based approaches. Including SPAE [17],

GaitGAN [35], GaitGANv2 [18] and DV-GEIs-pre [4]. The experimental results

of these methods can be shown in Table 4.480
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Table 4: Comparisons with appearance-based approaches at average accuracy (%) on CASIA-

B dataset. Excluding identical-view cases. (NM: normal walking, BG: walking with a bag,

CL: walking with a coat)
Gallery angle NM #1-4 0◦-180◦

Probe angle NM #5-6 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

SPAE [17] 50.0 58.1 61.0 63.3 64.0 62.1 62.3 66.3 64.4 54.5 46.7 59.3

GaitGAN [35] 41.9 53.5 63.0 64.5 63.1 58.1 61.7 65.7 62.7 54.1 40.6 57.2

GaitGANv2 [18] 48.1 61.9 68.7 71.7 66.7 64.8 66.0 70.2 71.6 58.9 46.1 63.1

DV-GEIs-pre [4] 64.5 76.2 81.3 80.8 77.1 72.6 74.4 78.9 80.6 75.6 63.7 75.1

PoseMapGait (ours) 59.9 76.2 81.7 83.1 76.8 76.1 76.3 81.1 79.6 75.4 66.1 75.7

Probe angle BG #1-2 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

SPAE [17] 34.0 38.6 42.1 42.7 39.0 32.8 31.3 39.9 41.0 35.7 32.3 37.2

GaitGAN [35] 28.5 35.2 42.7 34.4 38.0 33.5 36.2 44.8 41.8 33.3 23.6 35.6

GaitGANv2 [18] 37.2 43.4 46.6 46.0 47.6 41.5 41.2 48.5 48.8 42.2 31.6 43.1

PoseMapGait (ours) 47.7 56.1 63.9 63.3 64.2 59.5 58.1 61.5 61.9 58.2 44.3 58.1

Probe angle CL #1-2 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

SPAE [17] 21.5 25.4 27.3 28.1 26.9 22.2 22.3 26.3 24.8 21.5 19.6 24.2

GaitGAN [35] 9.8 15.2 24.8 25.0 24.7 19.9 22.7 24.5 27.7 18.0 11.9 20.4

GaitGANv2 [18] 20.7 23.1 26.6 30.8 28.2 23.0 24.4 27.4 24.2 21.9 16.0 24.2

PoseMapGait (ours) 30.4 41.9 45.2 48.9 47.3 48.1 46.5 44.9 36.0 34.5 29.6 41.2

From Table 4, we can see that the proposed method not only achieves the

highest recognition rates of each gallery view than SPAE, GaitGAN, and Gait-

GANv2, but also obtains much higher recognition rates in all three walking

conditions. It should be noticed that the mean accuracy gap between the

PoseMapGait (41.2%) and GaitGANv2 [18] (24.2%) can even reach 17.0% un-485

der the carrying a coat condition. That means that the proposed method is

more robust to the view, carrying a bag, and clothing variations. This is the

advantage of the pose estimation maps. The raw feature is robust to human

shape while the appearance-based features tend to be changed greatly.

We also compare with GaitSet [11] method, which has achieved very high490

performance in gait recognition. There are two experimental settings on Gait-

Set [11], one is based on Table 1, that is, the first 62 subjects are put into the

training set and the rest of the 62 subjects are put into the test set. In the

second experimental setting, we set the first 74 subjects as the training set and

the rest of the 50 subjects as the test set. In order to show the potential of our495

proposed in a larger dataset, we also implement another experiment that uses

the first 100 subjects as the training set. The experimental results are listed in

Table 5, the evaluation of calculating mean accuracy is the same as the mean
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accuracy of the above Table 4.

Table 5: Mean accuracy (%) comparison with GaitSet [11] approach on CASIA-B dataset.

Excluding Identical-view Cases.

Conditions Methods
Training Subjects Growth Rate

62 74 100 62 to 74 62 to 100

normal walking (NM)

GaitSet [11] 92.0 95.0 95.8 3.3 % 4.0 %

PoseMapGait (ours) 75.7 79.3 89.3 4.7 % 15.3 %

Gap 16.3 15.7 6.5 -1.4% -11.3%

walking with a bag (BG)
GaitSet [11] 84.3 87.2 91.8 3.4 % 8.1 %

PoseMapGait (ours) 58.1 61.1 74.2 5.2 % 21.7 %

Gap 26.2 26.1 17.6 -1.8% -13.6%

walking with a coat (CL)
GaitSet [11] 62.5 70.4 83.1 12.6 % 24.8 %

PoseMapGait (ours) 41.2 48.1 63.2 16.7 % 34.9 %

Gap 21.3 22.3 19.9 -4.1% -10.1%

From Table 5, it can be seen that the method of GaitSet [11] has achieved500

very high performance. There are two reasons that our model-based approach

PoseMapGait is inferior to the appearance-based approach GaitSet [11]. For

one reason, they used human silhouettes as input data which is a high dimen-

sion feature, while our pose estimation maps consist of only 17 compact joint

heatmaps. The semantic information is very limited compared with the human505

silhouettes. Another reason is that the performance of model-based methods

depends heavily on the accuracy of body part locating and tracking, while the

accuracy of joint heatmaps extraction is more challenging in such low-resolution

gait recognition conditions compared with human silhouette extraction.

To analyze the potential of pose estimation maps on gait recognition, we cal-510

culate the growth rates and gaps of the proposed PoseMapGait and GaitSet [11]

method from 62 training subjects to 74 and 100 training subjects. From Ta-

ble 5, it is clearly found that the growth rates of the proposed method are better

than those of GaitSet [11]. On the condition of walking with a coat, the pro-

posed method can achieve a 16.7% growth rate with only 12 additional training515

samples. When the number of training subjects increases from 62 to 100, the

proposed method shows great growth rates (21.7 % and 34.9 %) under the condi-

tions of walking with a bag and a coat. In addition, with the increase of training

subjects, it is obvious that the gaps of mean accuracy between GaitSet [11] and
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Figure 9: Comparing with some cross-view methods at probe angle 54◦, 90◦ and 126◦. The

gallery angles are the remaining 10 angles excluding the corresponding probe angle.
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PoseMapGait become smaller. The gap can achieve 6.5 % when the training set520

under 100 subjects with the normal walking condition. What’s more, from the

table, we can see the gaps in growth rates enlarge when the number of training

subjects increases from 62 to 100. The comparison shows that the pose esti-

mation maps feature has a great potential to deal with external environmental

factors. We believe that with the development of pose estimation algorithms525

and the increase in gait data volume, the performance of the proposed method

can ban further improved.

5.6. Effectiveness on View Variation

From the above experiments, it can be found the proposed method can

achieve state-of-the-art performance compared with recent model-based meth-530

ods. In order to show the effectiveness of the view variation of the proposed

method, we compared our methods (PoseGraphGait, MapGait and PoseMap-

Gait) with some cross-view gait recognition methods. Including FD-VTM [36],

RSVD-VTM [37], RPCA-VTM [38], R-VTM [39], GP+CCA [40] and C3A [41].

We choose three probe angles, that is, 54◦, 90◦, and 126◦, and the experimental535

setting is the same as these methods in the original papers. The recognition

rates are shown in Fig. 9.

It can be clearly found that our methods (PoseGraphGait, MapGait and

PoseMapGait) achieve much high performance when the difference between the

gallery angle and the probe angle is large. The greater the difference, the more540

obvious improvements. The greater the difference, the more obvious the im-

provement. It is the advantage of proposed methods that focuses on human

body movement modeling which is more robust to view variation.

5.7. Experimental results on MoBo dataset

The complete experimental results on the MoBo dataset are listed in Fig. 10.545

The evaluation under the variations of view, fast walking, incline walking, and

walking with a ball are shown in these figures. In the experiment, the slow

walking sequences at a specific view are put into the gallery set, and the fast

27



walking, incline walking, and walking with a ball are put into the probe set of

the three sets of the experiment, respectively. For each set of experiments, there550

are 36 combinations. That means there are 36 recognition rates in each figure.

It is easy to found the recognition rate will be high when the gallery angle is

equal to the probe angle.
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Figure 10: The experimental results when probe under three conditions on MoBo dataset.

5.8. Comparisons on MoBo dataset

As mentioned in previous experimental results on the CASIA-B dataset,555

the pose estimation maps feature used in the proposed method contains richer

gait information compared with some model-based features, and has less redun-

dant information compared with some appearance-based features. To show the

effectiveness of the pose estimation maps feature, we make comparisons with

some advanced methods on the MoBo dataset. Including recent popular model-560

based method PoseGait [9], and appearance-based method GaitGANv2 [18],

DV-GEIs-pre [4] and DV-GEIs [3]. We implemented these methods by our-

selves as they do not cite the experimental results of the MoBo dataset from

the original paper. In order to better analyze the comparisons, we analyze two

types of comparisons according to variation conditions.565

Firstly, we compare with average recognition rates on identical-view cases

under three different conditions (gallery data being slow walking), the compar-

ison is shown in Fig. 11. The average recognition rate is by averaging the 6

recognition rates when the gallery angle is equal to the probe angle from the

above experimental results (Fig. 10). From Fig. 11, it is clear that our three570
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Figure 11: The average recognition rates for the probe data being fast walking, incline walking

and walking with a ball on identical-view cases.

types of models can achieve better performance no matter under the condi-

tion of fast walking, or the conditions of incline walking and walking with a

ball. Additionally, there is a big gap (7.6%) between PoseMapGait (62.1%)

and GaitGANv2 (54.5%) when probe data is walking with a ball, which shows

that the pose estimation maps feature has better robustness to human shape575

compared with human silhouettes feature.

Secondly, we further compare with average recognition rates under three

different conditions on the cross-view case (excluding identical-view cases), as

shown in Table 6. The average recognition results are the mean accuracies

on the rest of 5 views except the identical-view cases, we can get the mean580

accuracies by averaging the 5 accuracies in Fig. 10. It should be notice that

the number of subjects on CASIA-B (124 subjects) is much more than that of

subjects on MoBo (25 subjects), and the types of variation conditions on MoBo

(5 variations: view, slow, fast, incline, and with a ball walking) is more than that

of CASIA-B (4 variations: view, normal, with a bag, and with a coat walking).585

Therefore, the overall recognition rates are inferior to that of CASIA-B. But our

methods PoseMapGait can still achieve the best accuracy on mean accuracy of 6

gallery views in all three walking conditions, that is, 46.7% (fast walking), 42.5%

(incline walking), and 37.9% (walking with a ball), respectively. The comparison
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Table 6: Average accuracies (%) on MoBo dataset under three different experimental settings,

excluding identical-view cases.
Gallery angle (slow walking) 0◦, 45◦, 90◦, 180◦, 225◦, 315◦

Probe angle (fast walking) 0◦ 45◦ 90◦ 180◦ 225◦ 315◦ Mean

GaitGANv2 [18] 31.7 46.7 50.0 33.3 36.7 50.0 41.4

DV-GEIs-pre [4] 41.7 41.7 51.7 41.7 40.0 53.3 45.0

DV-GEIs [3] 41.7 48.3 48.3 38.3 51.7 53.3 46.9

PoseGait [9] 38.3 45.0 43.3 25.0 36.7 45.0 38.9

PoseGraphGait (ours) 33.3 50.0 45.0 33.3 40.0 55.0 42.8

MapGait (ours) 40.0 41.7 55.0 35.0 43.3 56.7 45.3

PoseMapGait (ours) 48.3 43.3 43.3 40.0 46.7 58.3 46.7

Probe angle (incline walking) 0◦ 45◦ 90◦ 180◦ 225◦ 315◦ Mean

GaitGANv2 [18] 36.7 51.7 38.3 31.7 43.3 46.7 41.4

DV-GEIs [3] 40.0 51.7 36.7 35.0 38.3 51.7 42.2

PoseGait [9] 36.7 50.0 36.7 30.0 35.0 51.7 40.0

PoseGraphGait (ours) 38.3 48.3 33.3 36.7 45.0 40.0 40.3

MapGait (ours) 35.0 55.0 31.7 35.0 43.3 51.7 41.9

PoseMapGait (ours) 40.0 46.7 40.0 38.3 45.0 45.0 42.5

Probe angle (walking with a ball) 0◦ 45◦ 90◦ 180◦ 225◦ 315◦ Mean

GaitGANv2 [18] 32.7 27.3 30.9 27.3 32.7 27.3 29.7

DV-GEIs [3] 38.2 27.3 32.7 41.8 40.0 36.4 36.1

PoseGait [9] 32.7 21.8 32.7 23.6 38.2 34.5 30.6

PoseGraphGait (ours) 29.1 16.4 34.5 30.9 41.8 36.4 31.5

MapGait (ours) 38.2 21.8 29.1 45.5 38.2 38.2 35.2

PoseMapGait (ours) 36.4 30.9 32.7 45.5 41.8 40.0 37.9

of PoseMapGait and PoseGait [9] shows that the proposed pose estimation maps590

feature can further improve the performance of gait recognition compared with

the skeleton-based feature. And the comparison between PoseMapGait and

GaitGANv2 [18], DV-GEIs-pre [4], DV-GEIs [3] shows that the pose estimation

maps feature is robust multiple variations compared with the appearance-based

feature, which enhances the utility of gait recognition in real applications.595

6. Conclusions and Future Work

To address the various concerns induced by the rapid spread of COVID-19

while people are under surveillance, it is necessary to accelerate the develop-

ment of gait recognition technology because of its advantages of non-contact

and long-distance identification. In this paper, we proposed a novel model-based600

gait recognition method, called PoseMapGait. PoseMapGait employs pose esti-

mation maps as a gait feature, rather than directly relying on coordinates from

skeletons. Compared with the skeleton-based feature, this feature not only has
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richer body structure information, but also is more robust to human shape com-

pared to the silhouette-based feature. In addition, we construct a gait graph in605

order to extract spatial-temporal information from the human skeleton based on

the pose graph convolutional networks. The experimental results on CASIA-B

and MoBo datasets show that the proposed method achieves the new state-of-

the-art performance compared with recent advanced model-based methods, and

it is comparable with some state-of-the-art appearance-based methods.610

Although the proposed model-based method just achieves comparable accu-

racy with state-of-the-art appearance-based methods, it shows that model-based

methods have a great potential for gait recognition because they are robust for

more challenging conditions. In addition to AlphaPose, there are other methods

that can model the human body in more detail. For example, DensePose [42]615

can map all human pixels of an RGB image to the 3D surface of the human

body. We believe that with the development of pose estimation algorithms and

the quality of the camera, the proposed pose estimation maps feature can make

a great contribution to the development of gait recognition, and enhance its

utility in real applications.620
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