CS282 Winter 2003

Chapter 9 (Procedures in MAL)
9.1 MAL Procedure Call and Return mechanism

Review (in SAL)

Steps for handling transfer to and from procedure in SAL:

1. Save Return Address

2. Procedure Call

3. Execute Procedure

4. Return

Example SAL Code snippet:

.text

.

.

la proc_ret, retdd1

b proc1

retadd1:
.

.

.

done

proc1:
#procedure code here

.

.

.

b
(proc_ret)

How About MAL? We consider two new instructions jal and jr.
Equivalent MAL code:

.text

.

.

jal proc1

.

.

.

done

proc1:
#procedure code here

.

.

.

jr
$31

Instruction “jal”

SYNTAX:
jal
proc_label

1. This instruction places the address of the instruction following the jal instruction into register $31 (also called as $ra)

2. Then, it branches to the instruction labeled proc_label

Instruction “jr”(Jump Register)

SYNTAX:
jr
$31

1. This is used for procedure returns

2. This instruction causes the value specified register to be loaded into the program counter.

3. So, there is an unconditional jump to the address specified in the register.

9.2 Dynamic Storage Location

Consider Procedure returns in MAL.

We are saving the return address in a register.

Question:

Do you think we will run into any problems because of that?

Yes. When we have nested procedure calls. Because then, the value saved in $31 will be overwritten.

What is the Solution?

1. For each procedure that has been invoked, but not completed, we must save the return address.

2. We need a method that can dynamically allocate space for procedures when they are invoked and deallocate (free) the memory space when they return.

3. What do you think will be a good data structure to use in this case:

4. We can use a STACK and this space is said to be dynamically allocated.

The Concept of System Stack:

1. The stack, which is implemented by computers, in general, as part of a program’s execution environment.

2. Most computers provide assembly language support for accessing the stack efficiently.

MIPS RISC Architecture system stack:

Initial state:

1. Stack pointer for the system stack : $29

2. $sp is initialized at the beginning of program execution.

3. The initial value for $sp is the first empty location at the top of the stack.

4. stack grows towards smaller memory addresses

5. Data stored on the stack are word sized

PUSH operation:

Method 1:

sw
$8, 0($sp)

add
$sp, $sp, -4

Method 2:

add
$sp, $sp, -4

sw
$8, 4($sp)

POP operation:

Method 1:

add
$sp, $sp, 4

lw
$8, 0($sp)

Method 2:

lw
$8, 4($sp)

add
$sp, $sp, 4

An example for using the stack for Return Addresses:

Using concepts of Recursion and Leaf Procedure. (Figure 9.3 on page 233 of text)

9.3 Activation Records (Stack frames)

1. When a procedure is invoked, a new environment is created.

2. This new environment contains,

· New local variables for this procedure invocation

· New temporary variables needed for its execution.

· While values of the previous environment are preserved

· Any parameters passed to this procedure invocation

3. All the above are dynamic data.

4. At the termination of this procedure invocation, the new environment disappears and the old environment must be restored.

Question:

Where and how do we store the information associated with the new environment each time a procedure is invoked.

 Solution: Activation Record or Stack Frame

An Activation Record is the memory space allocated for holding information associated with a new environment of a procedure invocation. In other words, it contains all the information corresponding to the state of a procedure.

1. The size of each record is variable and depends on the needs of the procedure being invoked.

2. Using this memory space is a little more complicated than using procedure return address.

3. Lifetime of an activation record is the duration of the procedure call with which it is associated.

4. This memory space is allocated all at once, at the beginning of the procedure, made available through the entire duration and deallocated upon return from the procedure.

5. These Activation records are also stored on a stack structure.

6. But during Push and Pop operations, stack pointer must be adjusted by the size of the record, which is variable.

7. When do we do push and pop operations on such a stack?

9.4 Parameter Passing

· A procedure may be invoked with a set of parameters.

· It may have to return a value to the calling procedure.

Allocation of space for a procedure: (Figure 9.4 on page 234, from the text)

Examples of MAL code:

Consider that the parameters to be passed to a procedure are stored in the following registers:

Parameter 1 ($8

Parameter 2 ($12

Parameter 3 ($6

Lets look at three different ways in which these parameters can be pushed onto the stack.

Method 1

sw
$8, 0($sp)

add
$sp, $sp, -4

sw
$12, 0($sp)

add
$sp, $sp, -4

sw
$6, 0($sp)

add
$sp, $sp, -4

jal
proc

.

.

.

proc:
sw
$31, 0($sp)

add
$sp, $sp, -4

.

.

Method 2

add
$sp, $sp, -16

sw
$8, 16($sp)

sw
$12, 12($sp)

sw
$6, 8($sp)

jal
proc

.

.

.

proc:
sw
$31, 4($sp)

.

.

What’s the advantage here ?

Method 3

sw
$8, 0($sp)

sw
$12, -4($sp)

sw
$6, -8($sp)

jal
proc

.

.

.

proc:
sw
$31, 4($sp)

add
$sp, $sp, -16

.

.

How are these parameters accessed during procedure execution?

We are assuming Load/Store Architecture.

lw
$4, 16($sp)

lw
$5, 12($sp)

lw
$6, 8($sp)

Important: State of stack pointer is not modified by this code. Why?

Second option for Passing Parameters to procedures

Using registers.

What are the advantages and limitations?

Example for passing parameters through registers

(Figure 9.5, page 237 in text)

Example for passing parameters through stack

(Figure 9.6, page 238 in text)

Returning a Result

· Either the return value can be passed through a register or

· System stack can be used for that purpose
Types of parameters (Implementation in assembly language)

Pass by value:

We pass a value or copy of the variable as a parameter. So, the actual variable is never touched and cannot be changed.

Pass by reference:

We can pass the address of the variable as a parameter and hence, the procedure can access the value and change its value, if needed.

9.5 Saving Registers

Motivation: Why do we need to save registers?

Any register that is part of the old environment (of calling program) cannot be used by a newly called procedure, unless its value can be preserved and restored upon return to the calling procedure.

Again, we can use the STACK to achieve this purpose. How?
Register values can be saved on the stack, and then the registers can be reused by a procedure. The registers are restored to their original values at the end of a procedure. So, activation record is defined to include the space for registers.

Questions: Do we need to store all the register values?

 When should be we save the registers.

There are two different approaches we can adopt.

First Approach:

The called procedure itself will push the values of the registers it will be using onto the stack. Restoration of values occurs just before the procedure returns.

Second Approach:

Saving registers is done as part of the setup for procedure call. Before a procedure is called, any registers whose values should not be modified by the procedure to be called are first saved on the stack. Restoration of values occurs after the procedure returns.

Comparison of the two approaches:

	First Approach
	Second Approach

	Advantage is only the registers actually needed by the procedure need be saved.
	Advantage is that only the registers that are currently holding a value need be saved.

	But, the disadvantage is registers may be saved unnecessarily.
	Same disadvantage as the other one.

Note: Whatever is the approach, the calling program and the called procedure must have the same understanding about what registers are being saved and when.

Examples – see figures 9.7 and 9.8 from the text.

MIPS Conventions require that some of the registers be saved by one scheme and part to be saved by the other scheme.

Return Address can be stored like other registers, but it must be stored after the procedure call.

9.6 MIPS RISC Register Usage

Conventions refer to,

· Saved Registers.

· Temporary registers.

See figure 9.9, page 244 in the text.

Large memory addresses

Small memory addresses

Bottom of stack

$sp

